作业1-13

证明布尔代数是有界有补分配格,有界有补分配格是布尔代数

- 布尔代数是有界有补分配格
 - 给定布尔代数⟨B,+,*,',0,1⟩, 令'+'='V''*'='∧',
 - **格:** 由于+,*满足交换律,结合律以及吸收律(Theorem 15.2),所以给定布尔代数为1个Lattice(Lattice 定义)
 - **有界:** 由对于B中任意元素a,由于a+1=1,a*0=0 (Theorem 15.2 ii),可得 $a \lor 1=1$, $a \land 0=0$,所以 $0 \le a \le 1$,即给定布尔代数是有界的
 - **有补:** 由对于B中任意元素a,都存在a的补元a'(布尔代数定义),a + a' = 1, a * a' = 0
 - 分配: 布尔代数运算+,*满足分配率(布尔代数定义)
 - 所以布尔代数是有界有补分配格。

证明布尔代数是有界有补分配格,有界有补分配格是布尔代数

- 有界有补分配格是布尔代数
 - 给定有界有补分配格(L, \n, \n, \r), 令'+'='\''*'='\'
 - 交换律: 显然'+'='V''*'='A'满足交换律(格的定义)
 - 分配律: 显然'+'='V''*'='A'满足分配率(分配格定义)
 - 同一性:由于有界,必然存在1,0,使得对L中任意元素 $0 \le a \le 1$,所以 $a + 0 = a \lor 0 = a$, $a * 1 = a \land 1 = a$
 - 有补律:显然'+'='V''*'='A'满足分配率(有补格定义)
 - 所以,有界有补分配格是布尔代数

Let B be a finite Boolean algebra. Recall (Section 14.10) that an element a in B is an atom if a immediately succeeds 0, that is if $0 \ll a$. Let A be the set of atoms of B and let P(A) be the Boolean algebra of all subsets of the set A of atoms. By Theorem 14.8, each $x \neq 0$ in B can be expressed uniquely (except for order) as the sum (join) of atoms, i.e., elements of A. Say,

$$x = a_1 + a_2 + \dots + a_r$$

is such a representation. Consider the function $f: B \to P(A)$ defined by

$$f(x) = \{a_1, a_2, \dots, a_r\}$$

The mapping is well defined since the representation is unique.

Theorem 15.6: The above mapping $f: B \to P(A)$ is an isomorphism.

Two Boolean algebras B and B' are said to be *isomorphic* if there is a one-to-one correspondence $f: B \to B'$ which preserves the three operations, i.e., such that, for any elements, a, b in B,

$$f(a+b) = f(a) + f(b), \quad f(a*b) = f(a)*f(b) \text{ and } f(a') = f(a)'$$

1) 易证f是bijective

2)
$$\Rightarrow x = a_{x_1} + a_{x_2} + \dots + a_{x_r}, y = a_{y_1} + a_{y_2} + \dots + a_{y_{r'}}$$

$$f(x) = \{a_{x_1}, a_{x_2}, \dots, a_{x_r}\}, f(y) = \{a_{y_1}, a_{y_2}, \dots a_{y_{r'}}\}$$
i) $x + y = a_{x_1} + a_{x_2} + \dots + a_{x_r} + a_{y_1} + a_{y_2} + \dots + a_{y_{r'}} = \sum_{a \in f(x) \cup f(y) - f(x) \cap f(y)} a$ (吸收律)
$$f(x + y) = f(\sum_{a \in f(x) \cup f(y) - f(x) \cap f(y)} a) = f(x) \cup f(y) - f(x) \cap f(y)$$

$$f(x) + f(y) = \{a_{x_1}, a_{x_2}, \dots, a_{x_r}\} + \{a_{y_1}, a_{y_2}, \dots, a_{y_{r'}}\} = f(x) \cup f(y) - f(x) \cap f(y)$$

$$\therefore f(x + y) = f(x) + f(y)$$

ii) 类似i)

iii)
$$1 = a_1 + a_2 + \dots + a_{|B|}$$
, $f(1) = \{a_1, a_2, \dots, a_{|B|}\}$
已知 $f(x)' = f(1) - f(x)$
 $\therefore x' + x = 1$ 且 a_i 均为atom, $\therefore x' = \sum_{a \in f(1) - f(x)} a$
 $\therefore f(x') = f(1) - f(x) = f(x)'$

证明等势的(有穷)布尔代数均同构

Two Boolean algebras B and B' are said to be *isomorphic* if there is a one-to-one correspondence $f: B \to B'$ which preserves the three operations, i.e., such that, for any elements, a, b in B,

$$f(a+b) = f(a) + f(b), \quad f(a*b) = f(a)*f(b) \text{ and } f(a') = f(a)'$$

- 基本思路:
 - 由Theorem 15.6,对任意有穷等式布尔代数X、Y,若其Atom集合为 A_X , A_Y 则 $X \cong P(A_X)$, $Y \cong P(A_Y)$
 - 已知 | X | = | Y |
 - 证明: $P(A_X) \cong B^{|X|} = B^{|Y|} \cong P(A_Y), B^{|X|}$ 为:

Let $\mathbf{B}^n = \mathbf{B} \times \mathbf{B} \times \cdots \times \mathbf{B}$ (*n* factors) where the operations of +, *, and ' are defined componentwise using Fig. 15-1. For notational convenience, we write the elements of \mathbf{B}^n as *n*-bit sequences without commas, e.g., x = 110011 and y = 111000 belong to \mathbf{B}^n . Hence

$$x + y = 111011$$
, $x * y = 110000$, $x' = 001100$

Then \mathbf{B}^n is a Boolean algebra. Here $0 = 000 \cdots 0$ is the zero element, and $1 = 111 \cdots 1$ is the unit element. We note that \mathbf{B}^n has 2^n elements.