
计算机问题求解 – 论题2-2

- 算法的正确性

2015年3月03日

这段话和我们今天的主题什么关系？

几种不同的错误

 “语言错”

 很容易被语言处理软件发现，甚至自动纠正。

 “语义错”

 合格的程序员很少会犯这类错误。

 解题逻辑错误

 “粗心”造成的错误。
 常见(相对来说)

 “真正的”逻辑错误。

不常见，但这个是真的“伤脑筋”！

Test and debugging

 A designer might try out an algorithm on several

typical and atypical inputs and not find the error.

In fact, a programmer will normally test a

program on numerous inputs, sometimes called

test sets, and will gradually rid it of its language

errors and most of its logical errors.

 Most algorithmic problems have infinite sets of

legal inputs, and hence infinitely many candidate

test sets, each of which has the potential of

exposing a new error.

Debugging 的局限性

“someone” believed to be Dijkstra:

Program testing can be used to show the presence of

bugs, but never to show their absence!

Also, Dijkstra believed to say:

Programming is one of the most difficult branches of applied mathematics;

the poorer mathematicians had the better remain pure mathematicians.

关于debugging的思考

 为什么我们可以：

 The process of repeatedly executing an

algorithm, or running a program, with

the intention of finding and eliminating

errors is called debugging？

Infinite computation

为什么infinite computation 有时也被称为
infinite loop?

Infinite loop有什么作用？

如何避免不正确的Infinite loop出现？

部分和完全正确性

算法正确性证明：

 自动验证：

 some sort of super-algorithm that would accept as

inputs a description of an algorithmic problem P

and an algorithm A that is proposed as a solution,

and would determine if indeed A solves P.

 人工证明：

 Can we ourselves prove our algorithms to be

correct? Is there any way in which we can use

formal, mathematical techniques to realize this

objective?

如何利用什么数学技术来证明算法
的正确性？
 “部分正确性”：

 We do not care whether execution ever

reaches the endpoint, but that if it does we will

not be in a situation where the outputs differ

from the expected ones.

 we wish to capture the behavior of the

algorithm by making careful statements about

what it is doing at certain points.

 we thus attach intermediate assertions to

various checkpoints in the algorithm’s text.

如何理解以下文字？

 Attaching an assertion to a checkpoint means

that we believe that whenever execution

reaches the point in question, in any

execution of the algorithm on any legal input,

the assertion will be true.

Intermediate Assertions at Checkpoints
问题:
Input: a string of symbol S;

Output: the reverse image of S.

subroutine square of A:

(1) set C to 0;

(2) set D to 0;
(3) while (D≠A) do

set C to C +A;
set D to D +1;

(4) return C .

这个过程计算A的平方。

Ck = A Dk

Then:

 要证明一个算法的部分正确性：

 在哪里设置checkpoint？

 什么样的“局部特性”用断言形式描述？

 proceeding locally from checkpoint to

checkpoint does not bring about any violations

of the invariance properties

问题:
Input: a string of symbol S;

Output: the reverse image of S.

我们可以/必须证明：

收敛性：total正确性的证明方法

 showing that something good eventually happens

(not that bad things do not); namely, that the

algorithm indeed reaches its endpoint and

terminates successfully.

 find some quantity and show that it

converges:

 quantity keeps decreasing as execution

proceeds from one checkpoint to another, but

that it cannot decrease forever: there is some

bound below which it can never go

“部分”与“完全”正确性

 Euclid algorithm

 input: nonnegative integer m,n

 output: gcd(m,n)

 procedure

Euclid(int m,n)

if n=0

then return m

else return Euclid(n, m mod n)

if d is the GCD of m and n, it

must be theGCD of n and (m

mod n)
1

(m mod n) is always less than n, so,

the algorithm must terminate
2

但是，针对递归算法：

我们有类似的思考

Our expectation of Move:

Then:

 我们用数学归纳法证明 the expectation holds

for every N!

问题：这种方法和我们用循环不变量
的保持证明循环的正确性有何差异？

Open topic:

 请你以merge sort的递归算法为例，说明：

 1，递归算法的“不变量”和非递归（循环）
算法的“不变量”有何差异？

 2，证明这个算法的正确性。

（注意：合并过程的正确性也需要给出证明）

