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As discussed in Chapter I, an algorithmic problem can be concisely divided into
two parts:

I. a specification of the set of legal inputs; and

2. the relationship between the inputs and the desired outputs.
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“Computers Do Not Err!”
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Test and debugging

A designer might try out an algorithm on several
typical and atypical inputs and not find the error.
In fact, a programmer will normally test a
program on numerous inputs, sometimes called
test sets, and will gradually rid it of its language
errors and most of its logical errors.

Most algorithmic problems have infinite sets of
legal inputs, and hence infinitely many candidate
test sets, each of which has the potential of
exposing a new error.
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Logical errors, someone once said, are like mermaids. The mere fact that you
haven't seen one doesn't mean they don't exist.

As someone
once put it, testing and debugging cannot be used to demonstrate the absence of
errors In software, only their presence.

“someone” believed to be Dijkstra:

Program testing can be used to show the presence of
bugs, but never to show their absence!

Also, Dijkstra believed to say:

Programming is one of the most difficult branches of applied mathematics;
the poorer mathematicians had the better remain pure mathematicians.
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The process of repeatedly executing an
algorithm, or running a program, with
the intention of finding and eliminating
errors Is called debugging?



Infinite computation
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Infinite loop?
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As discussed in Chapter I, an algorithmic problem can be concisely divided into
two parts:

I. a specification of the set of legal inputs; and

2. the relationship between the inputs and the desired outputs.
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indeed
this point is reached

then and
| output I‘thig is the desired output this is the desired output

Partial correctness Total correctness
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o some sort of super-algorithm that would accept as
iInputs a description of an algorithmic problem P

and an algorithm A that is proposed as a solution,
and would determine if indeed A solves P.
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o Can we ourselves prove our algorithms to be
correct? Is there any way in which we can use
formal, mathematical techniques to realize this
objective?
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a We do not care Whether execution ever

reaches the endpoint, but that if it does we will
not be Iin a situation where the outputs differ

from the expected ones.

o we wish to capture the behavior of the
algorithm by making careful statements about
what it iIs doing at certain points.

o we thus attach intermediate assertions to
various checkpoints in the algorithm’s text.

d




m—————

I assertion |

: assertion

l------J

start I
R S

@
Y —— '
assertion :
. . O aal T 3

@

r———=-=" I
assertion :
Algorithm b e

r———""" [
I qccertion |
& assertion
: = l_ll ‘ I
. [ ——— |

r——_———-————-

I output satisfies
=

f
P .1
I desired relationship |

b s e i



PRSTR

anAn] 2

L b

Attaching an assertion to a checkpoint means
that we believe that whenever execution
reaches the point in question, in any
execution of the algorithm on any legal input,
the assertion will be true.



Intermediate Assertions at Checkpoints
=] AR ;

Input: a string of symbol S;

Assertion 1

S 1s a symbol string |
=

Output: the reverse image of .

Assertion 3

Y« head(X): Y @

X < tail(X)
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subroutine square of A:
(1) set Cto O; .
(2) set D to O; XA T AL S
(3) while (D=A) do
set C' to C'+4;
set D to D+1;
(4) return C'.

7] /R 7 :
fREEHE B AR RRA 4G ?

C.=AxD,

LAGY-F 77

f&@



Then:
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o proceeding locally from checkpoint to
checkpoint does not bring about any violations
of the invariance properties
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Input: a string of symbol ; T'/

Output: the reverse image of .
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(I — 2): for any string S, after carrying out the two instructions X <« §: Y <« A,

the equality S = reverse(Y) - X will hold.|
(2 — 3): if S =reverse(Y)- X,and X = A, then Y = reverse(S).

(2 — 2): if S =reverse(Y) - X, and X # A, then after carrying out the instructions
Y < head(X) - Y: X <« tail(X), the same equality, namely § = reverse(Y) - X,
will hold for the new values of X and Y.

(2 —> 2):1f S =reverse(Y) - X, and X £ A, then
S = reverse(head(X) - Y) - tail( X).
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o showing that something good eventually happens
(not that bad things do not); namely, that the
algorithm indeed reaches its endpoint and
terminates successfully.

find some quantity and show that it
converges:

0 quantity keeps decreasing as execution
proceeds from one checkpoint to another, but

that it cannot decrease forever: there is some
bound below which it can never go
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= Euclid algorithm
o Input: nonnegative integer m,n

output: gcd(m,n o .
- P M if disthe GCD of m and n, it

o procedure @ must be theGCD of n and (m
Euclid(int m,n) mod n)
If n=0

then return m
else return Euclid(n, m mod n)
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subroutine move N from X to Y using Z:
(I) if N is 1 then output “move X to Y™;

(2) otherwise (that is, if N 1s greater than 1) do the following:
(2.1) call move N — 1 from X to Z using Y:
(2.2) output “move X to Y;
(2.3) call move N — 1 from Z to Y using X:

(3) return.
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To prove partial correctness, we use a variant of the intermediate assertion method
that befits the non-iterative nature of recursive algorithms. Rather than trying to
formulate the local situation at a given point, we try to formulate our expectations
of the entire recursive routine just prior to entering it. This is then used in a cyclic-

Our expectation of Move:

Assume that the peg names A, B, and C are associated, in some order, with the
variables X, Y, and Z. Then, a terminating execution of the call move N from
X to Y using 7 lists a sequence of ring-moving instructions, which, if started
(and followed faithfully) in any legal confisuration of the rings and pegs in
which at least the N smallest rings are on peg X, correctly moves those N rings
from X to Y, possibly using Z as temporary storage. Moreover, the sequence
adheres to the rules of the Towers of Hanoi problem, and it leaves all other rings
untouched.



Then:

BATHEE A 0E B the expectation holds
for every N!
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Open topic:
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