作业反馈3－10

> CZ 5.8
> CZ 5.10
> CZ 5.22

5.8(a) Let G be a nontrivial connected graph. Prove that if v is an endvertex of a spanning tree of G, then v is not a cut vertex of G.

Proof: [Contrapositive] Suppose that v is a cut vertex of G. Then Corollary 5.4 implies that there are vertices u and w in $V(G)$ distinct from v and each other such that each u - w path in G contains v. Let \mathbb{T} be any spanning tree in G. We shall show that v is not an end-vertex of T. To see this, observe that Theorem 4.2 implies that there is a unique u - w path in T. This is also a u - w path in G, and thus must contain v. Thus, it follows that we must have $\operatorname{deg}_{\mathrm{T}}(\mathrm{v}) \geq 2$. Thus v is not an end-vertex of T. Since T was an arbitrary spanning tree of G, v will not be an end-vertex of any spanning tree of $\mathrm{G} . / /$
5.8(b) Use (a) to give an alternative proof of the fact that every nontrivial connected graph contains at least two vertices that are not cut-vertices.

```
    Proof: [Direct] By Theorem 4.10, G must have at least one
spanning tree T. Theorem 4.3 implies that T must have at least two
end-vertices. From Part (a), each of these must fail to be a cut-
vertex of G.//
```


5.8 (c) Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

Proof: Observe that the tree T_{0} consisting of v, together with all of the neighbors of v and the edges incident with v, is a subgraph of G. There is a maximal tree T in G containing T_{0} as a subgraph.

We claim that T must be a spanning tree. Suppose not. Then there is at least one vertex w in G but not in T such that

$$
d(w, T)=\min \{d(w, u): u \varepsilon V(T)\}
$$

is smallest amongst vertices w not T.
We claim that $d(w, T)=1$. Suppose not. Then there is some u in T with $d(u, w)=d(w, T)=k>1$. Let $P: u=v_{0}, v_{1}, \ldots, v_{k}=w$ be a u - w geodesic in G. If v_{1} is in $V(T)$, then u is not closest to w. On the other hand, if v_{1} is not in $V(T)$, then w doesn't give the smallest value of $d(w . T)$ amongst vertices of G not in $V(T)$. Thus, it must follow that $d(w, T)=1$.

Now this allows us to contradict the presumed maximality of T, for the tree $T_{1}=(V(T) u\{w\}, E(T) \cup\{$ uw $\})$, where $u \varepsilon V(T)$ satisfies $d(u, w)=d(w, T)=1$, is a tree containing T_{0} and properly containing T. Thus, T must in fact span $G . / /$
5.8 （d）Prove that if a connected graph G has exactly two vertices that are not cut－vertices，then G is a path．［Recall that if a tree contains a vertex of degree exceeding 2 ，then T has more than 2 end－vertices．］

Proof If the graph is not a path，it has a spanning tree with a vertex of degree at least 3．If a tree contains a vertex of degree at least 3，it has at least 3 end－vertices．According to（a），there are not cut－vertices，contradicting the assumption that the graph contains only 2 vertices that are not cut－vertices．

首先，如果图只有两个顶点，结论显然成立．
对于顶点数大于 2 的情况
1．G 无环，则 G 是一颗树，由（a）,G 只能有两个端点，因此 G 是一条路
2．G 有环，考察 G 的所有生成树 T ，由（a）,T 都只能有两个端点，即 T 是一条路，这说明 G 的所有顶点都在环上，这和 G 恰有两个非割点矛盾，因此 G 不能有环

因此 G 是一条路。
5.10 Prove that a connected graph G of size at least 2 is non-separable if and only if any two adjacent edges of G lie on a common cycle of G

- G is non-separable \rightarrow any two adjacent edges of G lie on a common cycle
- If $|G . V|=2$, obvious
- |G.V|>=3
- Let $u v, v w$ be any pair of two adjacent edges of G
- u, w must lie on a common cycle C1 of G.
- There must be a u-w path P does not contain v
- P+uv+vw forms a cycle of G
5.10 Prove that a connected graph G of size at least 2 is non-separable if and only if any two adjacent edges of G lie on a common cycle of G
- any two adjacent edges of G lie on a common cycle $\rightarrow \mathrm{G}$ is non-separable
- Assume that G is separable and v is a cut-vertex of G
- v must be adjacent to at least 2 edges, say $u v, v w$;
- $u v$, vw lie on a common cycle of $G \rightarrow$ there is a u-w path P, which does not contain v
- So, v cannot be an cut-vertex

5．22（a）Prove that if G is a k－connected graph and e is an edge of

 G ，then $G-e$ is $(k-1)$－connected> (a) Proof. 假设 e 的一个端点是 v. 则, $G-v$ 是$k-1$ 连通的. 而 $G-v$ 是 $G-e$ 的子图. 所以
 $G-e$ 是 $k-1$ 连通的．
（a）If G is a k－connected graph，then $K(G) \geqq k$ ．Assume the graph we obtain after removing $k-1$ vertices of G is called G^{\prime} ．If e is a bridge of G^{\prime} ， then $\mathrm{G}^{\prime}-\mathrm{e}$ is disconnected and $\mathrm{K}(\mathrm{G}-\mathrm{e}) \geqq \mathrm{k}-1$ ．Else，G－e is connected and $K(G-e) \geqq k \geqq k-1$ ．So（G－e）is $k-1$ connected．

5.22(a)Prove that if G is a k-connected graph and e is an edge of G, then G-e is $(k-1)$-connected

a. G is k -connected, $\mathrm{G}^{\prime}=\mathrm{G}-\mathrm{e}$, thus $\lambda(G) \geq \kappa(G) \geq \boldsymbol{k}$.

Case I: $\boldsymbol{e} \in \mathrm{U}$ denoting minimal cut edge vertices of G, then D denotes minimal cut edge of
G-e $|\mathrm{D}|=|\mathrm{U}|-1, k\left(G^{\prime}\right) \leq \lambda\left(G^{\prime}\right)=\lambda(G)-1$. if $\lambda(G)=\kappa(G)=k$, then
$\kappa\left(G^{\prime}\right)=\kappa(G)-1=k-1, G^{\prime}$ is $(\mathrm{k}-1)$-connected.
Case II: otherwise, $\boldsymbol{e} \notin \boldsymbol{U}$ or something else, G is still k -connected absolutely (k-1)-
connected.

5．22（a）Prove that if G is a k－connected graph and e is an edge of G ，then G－e is $(k-1)$－connected

a ：由 G 为 K 连通图知：$K \leqslant k(G) \leqslant \lambda(G)$
令 A 为 G 的最小点割集，B 为 G^{\prime} 的最小点割集，则 e 存在三种情况。
1：e 为最小点割集中任意两点间的边。
2：e 为最小点割集中的顶点和最小点割集之外顶点间的边。
3：e 为最小点割集之外的任意两个顶点间的边。

> 对于情况 1, 3: 知 $\lambda\left(G^{\prime}\right)=\lambda(G)$, 故而 G^{\prime} 为 K 连通的必为 $K-1$ 连通对于情况 2: 则 G^{\prime} 恰为 $K-1$ 连通。

5．22（a）Prove that if G is a k－connected graph and e is an edge of G ，then G－e is $(k-1)$－connected

（a） G is k －connected，so there is a minimum vertex－cut of size k ． After removing e from G ，at most one vertex is no longer needed in the minimum vertex－cut．Thus G is $(k-1)$－connected．
a
若不然，至少存在一个势为 $k-2$ 的顶点集 K ，使得 $G-K-e$ 不连通，考察 e 的位置，若 e 与 K 中顶点相连，则 $G-K$ 本身不连通，这与 G 为 k 连通图矛盾，若 e 与 K 中
顶点不相连，由于 $G-K$ 是联通的，这说明 e 是 $G-K$ 的割边，即 G 是 $k-1$ 连通
图，这与 G 为 k 连通图矛盾，综上，假设不成立，$G-e$ 是 $k-1$ 连通图．
(b)Prove that if G is a k-edge-connected graph and e is an edge of G, then G-e is ($k-1$)-edge-connected

- Case 1: e belongs to an minimum edge-cut set
- Case 2: e does not belong to any minimum edge-cut set

