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CZ:9.8

Question9.8
Determine, with explanation, whether the graph K4 × K2 is planar.

1 the graph K4 × K2

2 planar graph
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the graph K4 × K2

1 Kn : Complete graph with n vertices

2 × : Cartesian product

Cartesian product
For two graphs G and H, the Cartesian product G × H has vertex
set V(G×H) = V(G)×V(H), that is, every vertex of G×H is an order
pair (u, v), where u ∈ V(G) and v ∈ V(H). Two distinct vertices (u,v)
and (x,y) are adjacent in G × H if either
(1) u = x and vy ∈ E(H) or
(2) v = y and ux ∈ E(G).

emmmmm, the definition is too long! TAT
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K4 × K2

手画的图，有点丑，见谅
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planar graph

planar graph
A graph G is called planar graph if G can be drawn in the plane so
that two of its edges cross each other.

How to determine whether a graph is a planar graph or not?
1 Theroem 9.2 (It may not works for all graphs.)

If G is a planar graph of order n ≥ 3 and size m, then m ≤ 3n − 6.

”It provides a necessary condition for a graph to be planar and so
provides a sufficient condition for a graph to be nonplanar.”(CZ)
For K4 × K2,
m = 6× 2 + 4 = 16,n = 4× 2 = 8, 3n − 6 = 18,m < 3n − 6
Can’t get the answer.

2 Theroem 9.7 (Kuratowski’s Theorem)
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Kuratowski’s Theorem

Kuratowski’s Theorem
A graph G is planar if and only if G does not contain a subdivision of
K5 or K3,3 as a subgraph.

subdivision

A graph G’ is called a subdivision of a graph G if G′ = G or one or
more vertices of degree 2 are inserted into one or more edges of G.
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Kuratowski’s Theorem

图: a subdivision of K3,3 图: a subdivision of K5
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CZ:9.8

Question9.8
Determine, with explanation, whether the graph K4 × K2 is planar.

Proof.
For the graph K4 × K2 has the subdivision of K5 (or K3,3), so it is not
planar.
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CZ:10.5

Question10.5
Prove that every graph of order 6 with chromatic number 3 has at
most 12 edges.

chromatic numer

Definition
By a proper coloring (or, more simply, a coloring) of a graph G, we
mean an assignmenrt of colors (elements of some set) to the vertices of
G, one color to each vertex, such that adjacent vertices are colored
differently.
The smallest number of colors in any coloring of a graph G is called the
chromatic number of G and is denoted by χ(G).
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Mentality

Question10.5
Prove that every graph of order 6 with chromatic number 3 has at
most 12 edges.

The question is related to coloring and we can consider the
question from two aspects.

1 color classes （色类）
2 clique number （团数）
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Considering the color classes - Proof 1

About color classes
If G is a k-chromatic graph, then it is possible to partition V(G) into k
independent sets V1,V2, · · · ,Vk, called color classes.

Each color class is an independent sets.
As described in the question, consider A is graph of order 6 with
chromatic number 3.

So A is 3-chromatic.
Because A is of order 6, the number of vertices in each color
classes of a 3-coloring of A has 3 situations as follows

1 2,2,2
2 3,2,1
3 4,1,1
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1 2,2,2
2 3,2,1
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Considering the color classes - Proof 1

1 2,2,2
2 3,2,1
3 4,1,1

We konw that K6 has 15 edges. Suppose that A has m edges.
Consider the 3 situations described above.

2,2,2
For each color class is an independent sets. So compared with K6,
each color class lacks one edge, so m ≤ 15− 1− 1− 1 = 12

3,2,1
m ≤ 15− 3− 1 = 11

4,1,1
m ≤ 15− 6 = 9

Proof 1 ended.
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Considering the color classes - Proof 2

As described in the question, consider A is graph of order 6 with
chromatic number 3.
So a 3-coloring of A has 3 color classes. Suppose that the number
of vertices in them are x, y, z.
So we have that x + y + z = 6

Suppose the number of edges of A is m.
So m ≤ xy + yz + xz.

x2 + y2 + z2 ≥ xy + yz + xz

x2 + y2 + z2 + 2xy + 2yz + 2xz ≥ 3(xy + tz + xz)

xy + yz + xz ≤ (x + y + z)2
3

=
62

3
= 12

So m ≤ xy + yz + xz ≤ 12.
Proof 2 ended.
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Considering the clique number - Proof 3

clique number
A clique in a graph G is a complete subgraph of G. The order of the
largest clique in a graph G is its clique number, which is denoted by
ω(G).

And we have Theorem 10.5:

Theorem 10.5
For every graph G of order n, χ(G) ≥ ω(G) and χ(G) ≥ n

α(G) .
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Considering the clique number - Proof 3

Considering to construct A by deleting edges in K6

When delete one edge, the ω(A) = 5;
When delete two edges, the ω(A) is at least 4;
When delete three edges, the ω(A) is at least 3;
As the less edges we delete, the large ω(A) will be, and ω(A) is the
upper bound of χ(A), so we can get that every graph of order 6
with chromatic number 3 has at most 15− 3 = 12 edges.

Proof 3 ended.
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Considering the clique number - Proof 4
Turàn’s theorem

Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.
Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Considering the clique number - Proof 4
Turàn’s theorem
Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.
Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Considering the clique number - Proof 4
Turàn’s theorem
Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.

Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Considering the clique number - Proof 4
Turàn’s theorem
Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.
Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Considering the clique number - Proof 4
Turàn’s theorem
Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.
Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Considering the clique number - Proof 4
Turàn’s theorem
Let G be any graph with n vertices, such that G is Kr+1-free. Then the
number of edges in G is at most

r − 1

r · n2

2
= (1− 1

r ) ·
n2

2
.

wiki has the proof of this Turàn’s theorem.
Intuitive understanding（直观理解）

n · (n − n
r ) ·

1

2

We know that ω(A) ≤ χ(A) = 3, so A is K4-free. So the number of
edges in G is at most 2

3 · 36
2 = 12.

Proof 4 ended.
Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 19 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rosalie (CS@NJU) Open Topic: homeworkCZ: 9.8,10.5 2018 年 12 月 29 日 20 / 20


	CZ:9.8
	CZ:10.5

