7 F) 8 KW — emm2-2
E—HAE/JIE:Eﬁ |l__

2014 F2 H25H

As discussed in Chapter 1, an algorithmic problem can be concisely divided into
two parts:

I. a specification of the set of legal inputs:; and

2. the relationship between the inputs and the desired outputs.

X B A BATTS R iU T AR AR

)‘JI%QZ

Input: a string of symbol S;
Output: the reverse image of .

NO

Y« head(X) Y

X « tail(X)

YES

) /1

AT X T 1HHE AL
“BEHXFAREE
e %), X A 20 ?

=) R 2:
AR
: BRNERAE
g 0 Ha2i4
TR 4
“ 5 i 47
EEE?

ll.-l-'IIu'

k) 3

HERNLERFHI “money”

— a2 HF BT 4+
L FER SRR, YRBEVE HH B B R
58— MIFEH L2 A FG?

JURHAN [R5

Sra T
RS W R, B 1l
X
L AR R R A LR
il 1% R R
L HLL R
e s ke e
L i

I 754
“Computers Do Not Err!”

PR A B 3K) 1 2

Test and debugging

A designer might try out an algorithm on several
typical and atypical inputs and not find the error.
In fact, a programmer will normally test a
program on numerous inputs, sometimes called
test sets, and will gradually rid it of its language
errors and most of its logical errors.

Most algorithmic problems have infinite sets of
legal inputs, and hence infinitely many candidate
test sets, each of which has the potential of
exposing a new error.

‘ Debugging 1] J&y PR 14
Logical errors, someone once said, are like mermaids. The mere fact that you

haven't seen one doesn't mean they don't exist.

. As someone
once put it, testing and debugging cannot be used to demonstrate the absence of
errors in software, only their presence.

“someone” believed to be Dijkstra:

Program testing can be used to show the presence of
bugs, but never to show their absence!

Also, Dijkstra believed to say:

Programming is one of the most difficult branches of applied mathematics;
the poorer mathematicians had the better remain pure mathematicians.

KTdebuggingt) F1 75

A ATATATLL:

The process of repeatedly executing an
algorithm, or running a program, with
the intention of finding and eliminating
errors Is called debugging?

Infinite computation

Jft4infinite computation A HtHHEFR A

Infinite loop?

Infinite loopH 14 ?

nn] it S AN IEA) Infinite loopH R ?

As discussed in Chapter 1, an algorithmic problem can be concisely divided into
two parts:

I. a specification of the set of legal inputs:; and

2. the relationship between the inputs and the desired outputs.

b b

RIS A T

any legal any legal

input input

if indeed
this point is reached this point is reached
then and

output this is the desired output this 1s the desired outpul

Partial correctness Total correctness

by b

T sEa

= Euclid algorithm
o Input: nonnegative integer m,n

2 output: ged(m,n) if d is the GCD of m and n, it
a procedure @ must be theGCD of n and (m
Euclid(int m,n) mod n)
if n=0

then return m
else return Euclid(n, m mod n)

s O ittt it
R R8T R XA T AR
Partial ﬂ Total IE 7 # 2

—a
J

%—‘

V2 E AR R B -

EFNEATRE

o some sort of super-algorithm that would accept as
iInputs a description of an algorithmic problem P
and an algorithm A that is proposed as a solution,
and would determine if indeed A solves P.

NC

-1

R

o Can we ourselves prove our algorithms to be
correct? Is there any way in which we can use
formal, mathematical techniques to realize this
objective?

WU 4 B0 B ARE IS

] A 2
“%B/\f;ftﬁ R

—L A

o We do not care whether execution ever
reaches the endpoint, but that if it does we will
not be in a situation where the outputs differ
from the expected ones.

o we wish to capture the behavior of the
algorithm by making careful statements about
what it is doing at certain points.

o we thus attach intermediate assertions to
various checkpoints in the algorithm’s text.

i LR 3

Ui ny

[T

Attaching an assertion to a checkpoint means
that we believe that whenever execution
reaches the point in question, In any
execution of the algorithm on any legal input,
the assertion will be true.

‘ Intermediate Assertions at Checkpoints

Jal AL Assertion 1
e~y s A~ Y e o ———— -
Input: a string of symbol S; @ I" S is a symbol string |
Output: the reverse image of S. = / ____________]
X« §;
Y A ___Assertion2
|

[7///' S=reverse (¥)- X :

YES

Assertion 3

‘Y{— head(X) - }" @

) 6

iX Hintermediate assertions

FH2ERA “invariants” ?

subroutine square of A:
(1) set Cto O;

(2) set D to O; TN REHEARNT H,
(3) while (D A) do

set C to C+A4;

set D to D +1;

(4) return C'.

H & (:
WREHELLZDEITSS?

Ck:A Dk

[

I assertion |

l —————— . | I— —————— I
I assertion :
- . . .- E L —————— |
_ 1
assertion s
uuuuuu J r I N T . _l
! assertion :
[]
r—=—""" | :' """ I
: assertion | o z assertion I
l---_--‘ : l------‘
______ | S S S g G
:- e ! 1 output satisfies I
assertion = — : : ‘
I [I desired relationship :

| S — 4 |

Then:

TR — VR AR 7 I

0 LEMFE % B checkpoint ?

o AR ARER “RHSTE” T T2k i

o proceeding locally from checkpoint to
checkpoint does not bring about any violations
of the invariance properties

Ja| AR
Input: a string of symbol ;
Output: the reverse image of . ® (1)

NO YES

=g (L)

1131

|

1) —» (2)—>» (2)—> (L) ——-cc = (L) —> (3)
stan stop

AT L/ R

(I — 2): for any string S, after carrying out the two instructions X < S: Y <« A,
the equality S = reverse(Y) - X will hold,|

(2= 3): if S =reverse(Y)- X, and X = A, then Y = reverse(S).

(2= 2): 1if S =reverse(Y) - X, and X # A, then after carrying out the instructions
Y < head(X) - Y: X <« tail(X), the same equality, namely S = reverse(Y) - X,
will hold for the new values of X and Y.

(2— 2):1f S =reverse(Y)- X,and X # A, then
S = reverse(head(X) - Y) - tail(X).

ST -

o showing that something good eventually happens

| a
|l O
Lo

RN

total |

L

TR

(not that bad things do not); namely, that the
algorithm indeed reaches its endpoint and
terminates successfully.

find some guantity and show that it
converges:

o guantity keeps decreasing as execution
proceeds from one checkpoint to another, but

that It cannot decrease forever: there is some
bound below which it can never go

M= RERINL &/ Eid el |

=i}
><[,
*
i
b

The convergent Is simply
the length of the string X.

