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Algorithm 5.3.6.1. RSMS (RANDOM SAMPLING FOR MAX-SAT)

Input: A Boolean formula & over the set of variables {z,,...,z,}, n € IN.
Step 1: Choose uniformly at random a;,...,a, € {0,1}.

Step 2: output(ai,...,a,).

Output: an assignment to {r,...,Zn}.
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Algorithm 5.3.6.2. RRRMS (RELAXATION WITH RANDOM ROUNDING FOR

MAX-SAT)

Input:
Step 1:

Step 2:

Step 3:

Aformula®=F|\ AFp A+ A Fpy over X = {z1,...,xo} in CNF,
n,m € IN.
Formulate the MAX-SAT problem for @ as the integer linear program
LP(®) maximizing 37", z; by the constraints (5.19) and (5.20).
Solve the relaxed version of LP(®) according to (5.21). Let a(z,),
a(zz), ..., alzm), a(y1), ..., a(yn) € [0,1] be an optimal solution
of the relaxed LP(®).
Choose 1 values vy, ..., ¥n uniformly at random from [0, 1].
for i =1to ndo

if v; € [0,a(y;)] then set z; =1

else set ; =0
{Observe that Step 3 realizes the random choice of the value 1 for x;
with the probability a(y;).}

Output: An assignment to X.
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i

maximize sz-
i=1

subject to Z Yi + Z (1—-y;) =2 Vjed{l,..., m} (5.19)
icIn*(Fy) ieIn—(Fy)

where y;,z; € {0,1} forall i € {1,..., n}t,j€{l,..., m}. (5.20)
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Lemma 5.3.6.3. Let k be a positive integer, and let F; be a clause of &
with k literals. Let a(y1), ..., a(yn),a(z1), ..., a(2y) be the solution of LP(®P)
by RRRMS. The probability that the assignment computed by the algorithm
RRRMS satisfies F; is at least

(1 - (1 - %)k) alz;).

Proof. Since one considers the clause F; independently from other clauses, one
can assume without loss of generality that it contains only uncomplemented
variables and that it is of the form z1 V 22 V -+ -V z4. By the constraint (5.19)
of LP(®) we have
N+ye -ty > 2. (5.23)
The clause F; remains unsatisfied if and only if all of the variables y,, ¥z, . .., y«
are set to zero. Following Step 3 of RRRMS and the fact that each variable
is rounded independently, this occurs with probability
k
[Ta-a@w).
=1

So, F; is satisfied by the output of RRRMS with probability

k
1— _[[(1 —a(y))- (5.24)

Under the constraint (5.23), (5.24) is minimized when a(y;) = a(z;)/k for all
i=1,...,k Thus,

k
Prob(F; is satisfied) > 1 — H(l — a(z;) k). (5.25)

i=1

To complete the proof it suffices to show, for every positive integer k, that

fr=1—(1—-r/k) > (1—(1—%)3 -1 = g(r) (5.26)

for every r € [0,1] (and so for every a(z;)). Since f is a concave function in
r, and g is a linear function in r (Fig. 5.4), it suffices to verify the inequality
at the endpoints » = 0 and r = 1. Since f(0) = 0 = g¢(0) and f(1) =
1—(1- lfk)k = g(1), the inequality (5.26) holds. Setting r = a(z;) in (5.26)
and inserting (5.26) into (5.25) the proof is done. ]




RRRMS

Theorem 5.3.6.4. The algorithm RRRMS is a polynomial-time randomized
(e/(e — 1))-expected approzimation algorithm for MAX-SAT and a polynomial

time randomized (k*/(k® — (k — 1)%))-expected approximation algorithm for
MAX-EkKSAT.
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D&C Algorithm for 3Sat

Algorithm 3.5.2.1 (D&C-3SAT(F)).
Input: A formula F in 3CNF.

Step 1: if F € 3CNF(3,k) or F € 3CNF(m, 2) for some m, k € IN — {0},
then decide/whether F' € 3SAT or/not by testing all assignments to

the variables of F';

Step 2: Let H be gne of the shortest clauses of F.

T’imeD&c_gsAT(F) = O(’r‘ -1.84™)

3CNF(n,r) = {@| P is a formula over at most n variables in 3CNF
and @ contains at most r clauses}.

vD& 3SAT(F(51 =01, =0/l3= 1)))
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Algorithm 5.3.7.1. SCHONING’S ALGORITHM

Input: A formula F' in 3CNF over a set of n Boolean variables.
Step 1: K :=0;
UPPER := [20-V/3mn- (3)"]
S := FALSE.
Step 2: while K < UPPER and S := FALSE do
begin K := K+ 1;
Generate uniformly at random an assignment a € {0,1}™;
if F is satisfied by a then S:= TRUE;
M =0,
while M < 3n and S = FALSE do
begin M := M + 1;
Find a clause C that is not satisfied by «;
Pick one of the literals of C' at random, and flip its value
in order to get a new assignment
if F is satisfied by o then S:= TRUE
end
end

Step 3: if S = TRUE output "F'is satisfiable”
@ else output “F is not satisfiable”.
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The crucial
point is that the probability of success in one attempt is at least 1/ Exp(n), where
Exp(n) is an exponential function that grows substantially slower than 2”. Thus,
performing O( Ezp(n)) random attempts one can find a satisfying assignment with
a probability almost 1 in time O(|F| - n - Ezp(n)).
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