VENL1-4

DHZE2E 25 >J1. 2. 3. 4+ 5. 6+ 7. 8

2.1. The algorithm for summing the salaries of N employees presented in the text
performs a loop that consists of adding one salary to the total and advancing a
pointer on the employee list N — 1 times. The last salary is added separately. What is
the reason for this? Why don’t we perform the loop N times?

(1) make a note of 0; point to the first salary on the list;

(2) do the following N — 1 times:
(2.1) add the salary pointed at to the noted number;
(2.2) point to the next salary;

(3) add the salary pointed at to the noted number;
(4) produce the noted number as output.

2.2. Consider the bubblesort algorithm presented in the text.

(a) Explain why the outer loop is performed only N - 1 times.

(b) Improve the algorithm so that on every repeated execution of the outer loop,
the inner loop checks one element less.

MEARIRI FARE IR AY ()G VR — A
%’lN 1/\%1 AL B 7

AN

| N | 78 78 78 78 78 N/\ [-/J\ Iﬁ Eﬁ r
> 21 /| ¥ [69 69 69 69 5 AR /—\E
x|/ > 2] |2 \ I 46 46 46
14 Jeol|/ Yn) | 4 [26 2%
{ \ 4 / & \
Al]\ 14 W 46 12 1) 2 24
(¢ o \ ()
I P B AW) 26 12 s 14
e}/ A s | N % 14 1 14 |7 1
46 1| 46 / 8 8 8 N
start —> — e cee — end

T

(1) do the following N — 1 times:
(1.1) point to the first elem
(1.2) do the fﬂllﬂwingm times:
(1.2.1) compare the element pointed to with the next element;
(1.2.2) if the compared elements are in the wrong order, exchange them:
(1.2.3) point to the next element.

2.3. Prepare flowcharts for the bubblesort algorithm
presented in the text and for the improved version
you were asked to design in Exercise 2.2.

Swap(A[p],Alp+1]) Swap(A[p],Alp+1])

| stop _ poay | stop ey

2.4. Write algorithms that, given an integer N and a list L of N integers, produce in S
and P the sum of the even numbers appearing in L and the product of the odd ones,
respectively.

(a) Using bounded iteration.

(b) Using “goto” statements.

° ?‘Bﬁéﬁﬂé
 S=0
e P=1

2.5 Show how to perform the following simulations of some control constructs by
others. The sequencing construct “and-then” is implicitly available for all the
simulations. You may introduce and use new variables and labels if necessary.

(@) Simulate a “for-do” loop by a “while-do” loop.

for (A;B;C) do D=> A; while(B) do {D;C;}

(b) Simulate the “if-then” and “if-then-else” statements by “while-do” loops.

if A then B => while A do {B; break;}
if A then B else C=> while A do {B; break;} while !A do {C; break;}

(s

() Simulate a “while-do” loop by “if-then” and “goto” statements.

F:if Athen begin

while A do B => B;
goto F;
end

(d) Simulate a “while-do” loop by a “repeat-until” loop and “if-then” statements.

while A do B => if Athen repeat B until |A

2.8 Show how to simulate a “while-do” loop by conditional
statements and a recursive procedure.

FOL

If A then{
B;
F();

