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Algorithm 5.3.4.4. NEQ-PoL

Input: Two polynomials p; (21,...,2Zm) and p2(21,...,2m) over Z, with
at most degree d, where n is a prime and n > 2dm.
Step 1: Choose uniformly a1,as,...,an € Z, at random.

Step 2: Evaluate I := py(ay,as,..., a;n) —p2(ar,ag, ... am).
Step 3: if I # 0 then output(p;, # p2) {accept}
else output(p, = p2) {reject}.
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Theorem 5.3.4.5. Algorithm NEQ-POL is a polynomial time one-sided-error
Monte Carlo algorithm that decides the nonequivalence of two polynomials.

Proof. Since the only computation part of NEQ-POL is the evaluation of a
polynomial in Step 2, it is obvious that NEQ-PoOL is a polynomial-time algo-
rithm.

If p1 = p2, then py(ay,...,am) = p2(a1,...,an) forall ay,az,. .., am from
Z ., and so I = 0. So,

Prob(NEQ-POL rejects (p1,p2)) = 1.

If p1 # ps, then pi(z1,...,2m) — p2(x1,...,Zm) is a nonzero polynomial.
Following Lemma 5.3.4.2 and the fact n > 2dm,
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Prob (pi(a1,as,...,am) — pa(ai,az,...,am) =0) < m-d/n<

Lemma 5.3.4.2

Thus,

Prob(NEQ-PoOL accepts (p1,p2)) =

m-d
Prob(p(ai,...,am) —pa(ar,...,am) #0) 21— —— >
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Algorithm 5.3.4.9. NEQ-1BP

Input:

Step 1:
Step 2:

Output:

Two 1BPs A and B over the set of variables {x,,z2,...,2m}, m €
IN.

Construct the polynomials p4 and pg.

Apply the algorithm NEQ-POL on pa(z1,...,Tm) and pp(z1,...,
T, ) over some Z,, where n is a prime that is larger than 2m.

The output of NEQ-POL.
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Lemma 5.3.4.8. For every two 1BPs A and B,
A and B are equivalent if and only if pa and pp are identical.

Proof. To see this we transform every polynomial of degree at most 1 into
a special “normal” form similar to DNF for the representation of Boolean
functions.’® This normal form is the sum of “elementary multiplications”
Y1Y2 - - - Ym, wWhere either y; = z; or y; = (1 — x;) for every 1 = 1,2,...,m.
Obviously, two polynomials of degree 1 are equivalent if and only if they have
their normal forms identical. Moreover, every elementary multiplication of this
normal form corresponds to one input assignment on which the corresponding
1BP computes “1". So, A and B are equivalent if and only if the normal forms
of pa and pp are identical.

It remains to show that one can unambiguously assign the normal form to
every polynomial® p 4 of degree 1. First, one applies the distributive rules to
get a sum of elementary multiplications. If an elementary multiplication y does
not contain a variable z, then we exchange y by two elementary multiplications
z-yand (1 —z) -y. Obviously, an iterative application of this rule results in
the normal form. O
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Theorem 5.3.4.10. NEQ-1BP is a polynomial-time one-sided-error Monte
Carlo algorithm for the problem of noneguivalence of two 1BPs.

Proof. The construction of p4 and pg in Step 1 can be done in a time that is
quadratic in the input size (representation of 1BPs). Since NEQ-PoL works in
polynomial time and the sizes of p4 and pp (as inputs of NEQ-POL) are poly-
nomial in the size of the input of NEQ-1BP, Step 2 is also done in polynomial
time.

Due to Lemma 5.3.4.8 we know that A and B are equivalent if and only
if p4 and pp are equivalent. If 4 and B are equivalent (i.e., when p4 and pg
are equivalent), then NEQ-PoOL rejects (pa, pg) with a probability of 1, i.e.,
we have no error on this side. If A and B are not equivalent, then NEQ-POL
accepts (pa,pp) with the probability of at least

1-m/n.

Since n > 2m, this probability is at least 1/2. O
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Given a pattern P[1 ..

Similarly, we can compute #y from T'[1..

We can compute p in time ®(m) using Horner’s rule (see Section 30.1):
p = P[m]+10(Pm—1] 4+ 10(P[m —2] +--- + 10(P[2] + 10P[1])--
m] in time ©(m).

To compute the remaining values #,,%,, ...
that we can compute #;1; from #; in constant time, since

o1 =100, — 10" 'T[s + 1)+ T[s +m+ 1].

In general, with a d-ary alphabet {0,1,..
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m], let p denote its corresponding decimal value.

RABIN-KARP-MATCHER (T, P,d,q)

). Il n = T.length
2 m = P.length

that dq fits within a computer word and adjust the recurrence equation (32.1) to

work modulo g, so that it becomes
=(d({t;—T[s+1lh)+T[s +m+ 1)) mod g,

s+1

where h = d™ ! (mod q) is the value of the digit “1” in the high-order position
of an m-digit text window.

(-

3 h=d™'modg
s tn_m in time ©(n — m), we observe 4 p=0
5 th=20
6 fori =1tom // preprocessing
(32.1) 7 p = (dp + PJi]) mod ¢
8 fo = (df0+T[1]) mod ¢
9 fors =0ton—m // matching
J 5 s 10 if P == ts
+d — 1}, we choose g so ) if P[1..m]==T[s+1..5 + m]
12 print “Pattern occurs with shift” s
13 ifs<n—m
(322) 14 tye1 = (d(ts = T[s + 1]h) + T[s +m + 1]) mod g
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RABIN-KARP-MATCHER (T, P,d, q)
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10
11

13
14

= T.length
m = P.length
h = d™ ! mod g
p=20
to =0
fori = 1tom // preprocessing
p = (dp + P[i]) mod ¢
to = (dto + T[i]) mod g
fors = O0ton—m // matching

if p==1,
if P[1..m|==T[s+1..5+ m]
print “Pattern occurs with shift” s
ifs<n—m
tse1 = (d(ts—=T[s+ 1Jh) + T[s + m + 1]) mod ¢
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