3-6 Decompositions of Graphs

(Part II: DFS, SCC, Bicomponent)

Hengfeng Wei

hfwei@nju.edu.cn

November 05, 2018

The Power of the Hammer of DFS

Graph Traversal \implies Graph Decomposition

Structure! Structure! Structure!

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1 , k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms", Robert Tarjan

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1 , k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

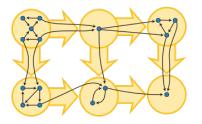
Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms", Robert Tarjan

Tarjan's SCC Bicomponent

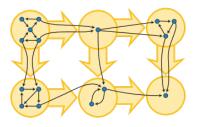
Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.



Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.



Two tiered structure of digraphs:

 $\mathrm{digraph} \equiv \mathrm{a} \ \mathrm{dag} \ \mathrm{of} \ \mathrm{SCCs}$

SCC: equivalence class over reachability

Semiconnected Digraph (Problem 22.5-7)

$$G=(V,E)$$

 $\forall u,v \in V: u \leadsto v \vee v \leadsto u$

Semiconnected Digraph (Problem 22.5-7)

$$G = (V, E)$$

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$

 $digraph \equiv a dag of SCCs$

Semiconnected Digraph (Problem 22.5-7)

$$G = (V, E)$$

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$

 $digraph \equiv a dag of SCCs$

G is semiconnected \iff The dag of SCCs is semiconnected

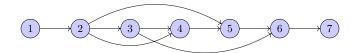
A DAG is semiconnected $\implies \exists !$ topo. ordering

A DAG is semiconnected $\implies \exists !$ topo. ordering

A DAG is semiconnected $\iff \exists ! \text{ topo. ordering}$

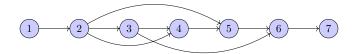
A DAG is semiconnected $\implies \exists !$ topo. ordering

A DAG is semiconnected $\longleftarrow \exists !$ topo. ordering



A DAG is semiconnected $\implies \exists !$ topo. ordering

A DAG is semiconnected $\iff \exists ! \text{ topo. ordering}$



DAG: Semiconnected $\iff \exists ! \text{ topo. ordering}$

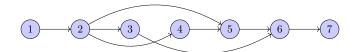
DAG: Semiconnected $\iff \exists!$ topo. ordering

DAG: Semiconnected $\iff \exists ! \text{ topo. ordering}$

Toposort + Check edges (v_i, v_{i+1})

DAG: Semiconnected $\iff \exists ! \text{ topo. ordering}$

TOPOSORT + Check edges (v_i, v_{i+1})



 $|digraph \equiv a dag of SCCs|$

Lemma (22.14)

Let C and C' be two SCCs in a digraph G.

$$u \in C \to v \in C' \implies \mathit{f}[C] > \mathit{f}[C']$$

 $digraph \equiv a dag of SCCs$

Lemma (22.14)

Let C and C' be two SCCs in a digraph G.

$$u \in C \to v \in C' \implies f[C] > f[C']$$

$$d[U] = \min_{u \in U} d[u] \qquad f[U] = \max_{u \in U} f[u]$$

 $digraph \equiv a dag of SCCs$

Lemma (22.14)

Let C and C' be two SCCs in a digraph G.

$$u \in C \to v \in C' \implies f[C] > f[C']$$

$$d[U] = \min_{u \in U} d[u] \qquad f[U] = \max_{u \in U} f[u]$$

DAG
$$\implies u \rightarrow v \iff f[u] > f[v]$$

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

The vertice v with the highest f[v] is in a source SCC.

(I) DFS on G; DFS on G^T $(f[\cdot] \downarrow)$

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

- (I) DFS on G; DFS on G^T $(f[\cdot] \downarrow)$
- (II) DFS on G^T ; DFS on G

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

- (I) DFS on G; DFS on G^T $(f[\cdot] \downarrow)$
- (II) DFS on G^T ; DFS on $G(f[\cdot]\downarrow)$

SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

- (I) DFS on G; DFS/BFS on G^T $(f[\cdot] \downarrow)$
- (II) DFS on G^T ; DFS/BFS on $G(f|\cdot|\downarrow)$

Definition (Biconnected Graph)

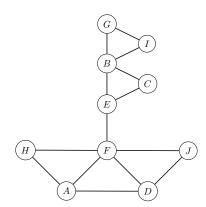
A connected undirected graph is *biconnected* if it contains no "cut-nodes".

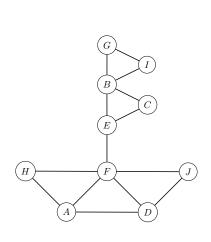
Definition (Biconnected Graph)

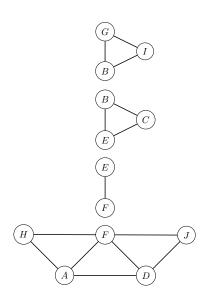
A connected undirected graph is *biconnected* if it contains no "cut-nodes".

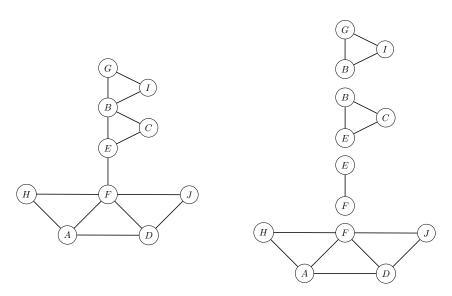
Definition (Biconnected Component (Bicomponent))

A *bicomponent* of an undirected graph is a maximal biconnected subgraph.

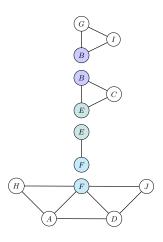






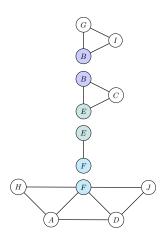


Paritition of edges (not of nodes)



Theorem (Cut-nodes and Bicomponents)

Let $G_i = (V_i, E_i)$ be the bicomponents of a connected undirected graph G = (V, E).

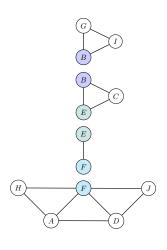


Theorem (Cut-nodes and Bicomponents)

Let $G_i = (V_i, E_i)$ be the bicomponents of a connected undirected graph G = (V, E).

(a)

$$\forall i \neq j : \left| V_i \cap V_j \right| \leq 1$$



Theorem (Cut-nodes and Bicomponents)

Let $G_i = (V_i, E_i)$ be the bicomponents of a connected undirected graph G = (V, E).

(a)

$$\forall i \neq j : \left| V_i \cap V_j \right| \leq 1$$

(b)

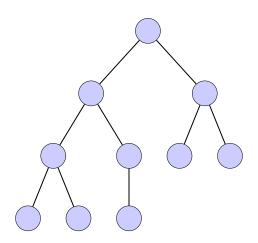
 $v \text{ is a cut-node} \iff \exists i \neq j : v \in V_i \cap V_j$

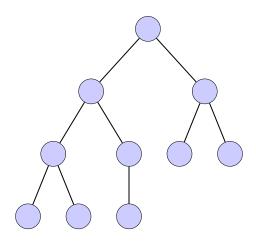
The Power of the Hammer of DFS on Undirected Graphs

The Power of the Hammer of DFS on Undirected Graphs

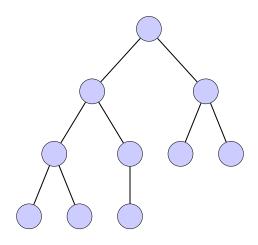
Theorem (Theorem 22.10)

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.



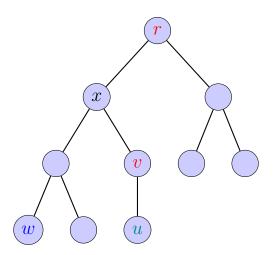


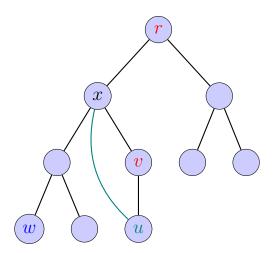
Cut-nodes?

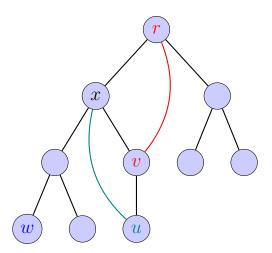


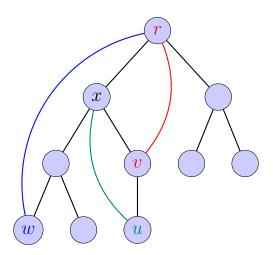
Cut-nodes?

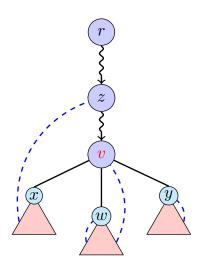
Bicomponents?











Theorem (Characterization of Cut-nodes)

In a DFS tree, v is a cut-node

- (a) v is the root and $deg(v) \geq 2$
- (b) v is not the root and some subtree of v has no back edge to a proper ancestor of v

Theorem (Characterization of Cut-nodes)

In a DFS tree, v is a cut-node

- (a) v is the root and $deg(v) \ge 2$
- (b) v is not the root and some subtree of v has no back edge to a proper ancestor of v

(I) When and how to identify a bicomponent?

The earliest ancestor v can get by following tree edges $\mathbb T$ and back edges $\mathbb B$.

The earliest ancestor v can get by following tree edges $\mathbb T$ and back edges $\mathbb B$.

(II) When and how to initialize \sup date back[v]?

The earliest ancestor v can get by following tree edges $\mathbb T$ and back edges $\mathbb B.$

The earliest ancestor v can get by following tree edges \mathbb{T} and back edges \mathbb{B} .

$$\operatorname{back}[v] = \min \begin{cases} \{v\} \\ \{w \mid (v, w) \in \mathbb{B}\} \\ \{\operatorname{back}[w] \mid (v, w) \in \mathbb{T}\} \end{cases}$$

$\operatorname{back}[v]$:

The earliest ancestor v can get by following tree edges \mathbb{T} and back edges \mathbb{B} .

$$\operatorname{back}[v] = \min \begin{cases} \{v\} \\ \{w \mid (v, w) \in \mathbb{B}\} \\ \{\operatorname{back}[w] \mid (v, w) \in \mathbb{T}\} \end{cases}$$

```
tree edge (\rightarrow v): back[v] = d[v]
  back edge (v \to w): back[v] = \min \{ \text{back}[v], \underline{d[w]} \}
backtracking from w: back[v] = \min \{ back[v], back[w] \}
```

The earliest ancestor v can get by following tree edges \mathbb{T} and back edges \mathbb{B} .

$$\operatorname{back}[v] = \min \begin{cases} \{v\} \\ \{w \mid (v, w) \in \mathbb{B}\} \\ \{\operatorname{back}[w] \mid (v, w) \in \mathbb{T}\} \end{cases}$$

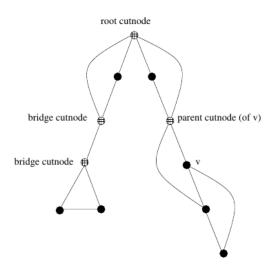
```
tree edge (\to v): back[v] = d[v]
back edge (v \to w): back[v] = \min \{ \text{back}[v], d[w] \}
backtracking from w: back[v] = \min \{ \text{back}[v], \text{back}[w] \}
```

Backtracking from w to v: back $[w] \ge d[v]$

After-class Exercise: BICOMP

1: **procedure** BICOMP(G)

2: Here: Your Code Based on the DFS Framework



Office 302

Mailbox: H016

hfwei@nju.edu.cn