
1 12/7/2012

Red-Black Trees

2 12/7/2012

Use of RB Tree

●

Red–black trees offer worst-case guarantees for insertion time, deletion
time, and search time. Not only does this make them valuable in time-

 sensitive applications such as

real-time applications, but it makes them
valuable building blocks in other data structures which provide worst-case
guarantees; for example, many data structures used in

computational

geometry

can be based on red–black trees, and the

Completely Fair
Scheduler

used in current

Linux

kernels uses red–black trees.

●

Red–black trees are also particularly valuable in

functional programming,
where they are one of the most common

persistent data structures, used to

construct

associative arrays

and

sets

which can retain previous versions
after mutations. The persistent version of red–black trees requires O(logn)
space for each insertion or deletion, in addition to time.

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Set_(computer_science)

3 12/7/2012

A clip from Tarjan’s Paper

4 12/7/2012

A little history

●

1962: The idea of balancing a search tree is
due to Adel’son-Velskii

and Landis.

●

1970: Hopcroft

introduced 2-3 trees. (B-tree is
a generalization of it)

●

1972: Bayer invented Red-black trees.
●

1978: Guibas

and Sedgewick

introduced the

red/black convention.

5 12/7/2012

Red-Black Properties

●

The red-black properties:
1. Every node is either red or black
2. The root is always black
3. Every leaf (NULL pointer) is black

○

Note: this means every “real”

node has 2 children

4. If a node is red, both children are black
○

Note: can’t have 2 consecutive reds on a path

5.

Every path from node to descendent leaf contains
the same number of black nodes

6 12/7/2012

Black-Height

●

black-height: # black nodes on path to leaf
●

What is the minimum black-height of a node
with height h?

●

A: a height-h node has black-height 

h/2
●

Theorem: A red-black tree with n internal
nodes has height h 

2 lg(n + 1)

■

Proved by induction

7 12/7/2012

RB Trees: Proving Height Bound

●

Prove: n-node RB tree has height h 

2 lg(n+1)
●

Claim: A subtree

rooted at a node x contains

at least 2bh(x)

-

1 internal nodes
■

Proof by induction on height h

■

Base step: x has height 0 (i.e., NULL leaf node)
○

What is bh(x)?

8 12/7/2012

RB Trees: Proving Height Bound

●

Prove: n-node RB tree has height h 

2 lg(n+1)
●

Claim: A subtree

rooted at a node x contains

at least 2bh(x)

-

1 internal nodes
■

Proof by induction on height h

■

Base step: x has height 0 (i.e., NULL leaf node)
○

What is bh(x)?

○

A: 0
○

So…subtree

contains 2bh(x) - 1

= 20

- 1

= 0 internal nodes (TRUE)

9 12/7/2012

RB Trees: Proving Height Bound

●

Inductive proof that subtree

at node x contains
at least 2bh(x)

-

1 internal nodes

■

Inductive step: x has positive height and 2 children
○

Each child has black-height of bh(x) or bh(x)-1 (Why?)

○

The height of a child = (height of x) - 1
○

So the subtrees

rooted at each child contain at least

2bh(x) -

1

-

1 internal nodes

○

Thus subtree

at x contains
(2bh(x) -

1

-

1) + (2bh(x) -

1

- 1) + 1

 = 2•2bh(x)-1

- 1 = 2bh(x)

-

1 nodes

10 12/7/2012

Proving Height Bound

●

Thus at the root of the red-black tree:
n 

2bh(root) - 1

n 

2h/2

- 1
lg(n+1) 

h/2

h 

2 lg(n + 1)

Thus h = O(lg

n)

11 12/7/2012

RB Trees: Worst-Case Time

●

So we’ve proved that a red-black tree has
O(lg

n) height

●

Corollary: These operations take O(lg

n) time:
■

Minimum(), Maximum()

■

Successor(), Predecessor()
■

Search()

●

Insert() and Delete():
■

Will also take O(lg

n) time

■

But will need special care since they modify tree

12 12/7/2012

Red-Black Trees: An Example

●

Color this tree: 7

5 9

1212

5 9

7

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

13 12/7/2012

●

Insert 8
■

Where does it go?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

14 12/7/2012

●

Insert 8
■

Where does it go?

■

What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

15 12/7/2012

●

Insert 8
■

Where does it go?

■

What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

16 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

17 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

18 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Can’t be red! (#4) 12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

19 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Can’t be red! (#4)

○

Can’t be black! (#5)
12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

20 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Solution:
recolor the tree

12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

21 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

22 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

■

What color?
12

5 9

7

8

11

10

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

23 12/7/2012

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

■

What color?
○

A: no color! Tree
is too imbalanced

○

Must change tree structure
 to allow recoloring

■

Goal: restructure tree in
O(lg

n) time

12

5 9

7

8

11

10

24 12/7/2012

RB Trees: Rotation

●

Our basic operation for changing tree structure
is called rotation:

●

Does rotation preserve inorder key ordering?
●

What would the code for rightRotate()
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

25 12/7/2012

rightRotate(y)

RB Trees: Rotation

●

Answer: A lot of pointer manipulation
■

x keeps its left child

■

y keeps its right child
■

x’s

right child becomes y’s

left child

■

x’s

and y’s

parents change
●

What is the running time?

y

x C

A B

x

A y

B C

26 12/7/2012

Rotation Example

●

Rotate left about 9:

12

5 9

7

8

11

27 12/7/2012

Rotation Example

●

Rotate left about 9:

5 12

7

9

118

28 12/7/2012

Red-Black Trees: Insertion

●

Insertion: the basic idea
■

Insert x into tree, color x red

■

Only r-b property 4 might be violated (if p[x] red)
○

If so, move violation up tree until a place is found where
it can be fixed

■

Total time will be O(lg

n)

29 12/7/2012

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●

Case 1: “uncle”

is red
●

In figures below, all ’s are
equal-black-height subtrees

C
A D

 B

 
 

C
A D

 B

 
 x

y

new x

Change colors of some nodes, preserving #5: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1

30 12/7/2012

B

 
x

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●

Case 1: “uncle”

is red
●

In figures below, all ’s are
equal-black-height subtrees

C
A D

  

C
A D

 
y

new x

Same action whether x is a left or a right child

B

 
x 

case 1

31 12/7/2012

B

 
x

RB Insert: Case 2

if (x == x->p->right)
x = x->p;
leftRotate(x);

// continue with case 3 code

●

Case 2:
■

“Uncle”

is black

■

Node x is a right child

●

Transform to case 3 via a
left-rotation

C
A 

C
By

A

 
x 

case 2


y

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 5: all downward paths contain same number of black nodes

32 12/7/2012

RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

●

Case 3:
■

“Uncle”

is black

■

Node x is a left child

●

Change colors; rotate right

B
Ax



case 3C
B

A

 
x 

y C

 

Perform some color changes and do a right rotation
Again, preserves property 5: all downward paths contain same number of black nodes

33 12/7/2012

RB Insert: Cases 4-6

●

Cases 1-3 hold if x’s

parent is a left child
●

If x’s

parent is a right child, cases 4-6 are

symmetric (swap left for right)

34 12/7/2012

rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #4 up tree, maintaining #5 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1

Case 2

Case 3

35 12/7/2012

rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #3 up tree, maintaining #4 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3

36 12/7/2012

Red-Black Trees: Deletion

●

And you thought insertion was tricky…

37 12/7/2012

Red-Black Trees

Bottom-Up Deletion

38 12/7/2012

Recall “ordinary”

BST Delete

1. If vertex to be deleted is a leaf, just delete it.
2. If vertex to be deleted has just one child, replace it with that

child
3. Otherwise, if vertex Z has both a left and a right child. We

find Z’s successor U, replace Z’s value by U’s value and
then delete U (a recursive step, and Y must be a leaf or has
just one child).

39 12/7/2012

Bottom-Up Deletion

1.

Do ordinary BST deletion. Eventually a
“case 1”

or “case 2“

will be done (leaf or just

one child). If deleted node, U, is a leaf,
think of deletion as replacing with the NULL
pointer, V. If U had one child, V, think of
deletion as replacing U with V.

2.

What can go wrong??

U

U

V

40 12/7/2012

Which RB Property may be violated
after deletion?

1.

If U is red?

Not a problem –

no RB properties violated

2.

If U is black?

If U is not the root, deleting it will change
the black-height along some path

U

41 12/7/2012

Fixing the problem

●

Think of V (NULL pointer or U’s only child) as
having an “extra”

unit of blackness. This extra

blackness must be absorbed into the tree (by a red
node), or propagated up to the root (without violating
the RB properties)

and out of the tree.

●

If V is red, then we color it black to make it absorb
the extra black. Otherwise, V is “double black”.

●

There are four cases –

our examples and “rules”
 assume that V is a left child. There are symmetric

cases for V as a right child

42 12/7/2012

Terminology

●

The node just deleted was U (Z’

successor!)
●

The node that replaces it is V, which has an
extra unit of blackness

●

The parent of V is P
●

The sibling of V is S

Black Node

Red Node Red or Black and don’t care

Z

U

V

P

S

43 12/7/2012

●

4 cases:
■

Case 1: V’s sibling S is red;  Case 2/3/4

■

Case 2: V’s sibling S is black; S’s both children
are black; recursive or terminal

■

Case 3: V’s sibling S is black; S’s left child is red;
S’s right child is black;  Case 4

■

Case 4: V’s sibling S is black; S’s left child is
red/black; S’s right child is red; terminal case

44 12/7/2012

Case 1 Diagram

P

SV+
P

S

V+

Left Rotate on P

P

V+

S
Recolor
SP

New sibling

45 12/7/2012

Bottom-Up Deletion
Case 1

●

V’s sibling, S, is Red
■

Left Rotation on P and recolor S & P

●

NOT a terminal case –

One of the other cases
will now apply

●

All other cases apply when S is Black

Back to Case Map

46 12/7/2012

Case 2 diagram

P

SV+

P+

SV

Recolor and absorb

Either extra black absorbed by P (P was Red, now case
done) or P now has extra blackness (P was black, now
recursive at P+.)

47 12/7/2012

Bottom-Up Deletion
Case 2

●

V’s sibling, S, is black and has two black
children.
■

Recolor S to be Red

■

P absorbs V’s extra blackness
○

If P is Red, we’re done

○

If P is Black, it now has extra blackness and problem
has been propagated up the tree

Back to Case Map

48 12/7/2012

Case 3 Diagrams

P

SV+

P

S
V+Rotate

P

S
V+

Recolor

Sibling Black;
Sibling’s Right Red

49 12/7/2012

Bottom-Up Deletion
Case 3

●

S is Black, S’s right child is Black and S’s left
child is Red
■

Right Rotate

on S

■

Swap color of S and S’s left child
■

Now in case 4

Back to Case Map

50 12/7/2012

Case 4 diagrams

P

SV+ P

S

V

Left Rotate on P

P

S

V

Recolor

51 12/7/2012

Bottom-Up Deletion
Case 4

●

S is black
●

S’s RIGHT child is RED (Left child either
color)
■

Rotate S around P

■

Swap colors of S and P, and color S’s Right child
Black

●

This is the terminal case –

we’re done

Back to Case Map

52 12/7/2012

The End

	幻灯片编号 1
	Use of RB Tree
	A clip from Tarjan’s Paper
	A little history
	Red-Black Properties
	Black-Height
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	Proving Height Bound
	RB Trees: Worst-Case Time
	Red-Black Trees: An Example
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	RB Trees: Rotation
	RB Trees: Rotation
	Rotation Example
	Rotation Example
	Red-Black Trees: Insertion
	RB Insert: Case 1
	RB Insert: Case 1
	RB Insert: Case 2
	RB Insert: Case 3
	RB Insert: Cases 4-6
	幻灯片编号 34
	幻灯片编号 35
	Red-Black Trees: Deletion
	Red-Black Trees
	Recall “ordinary” BST Delete
	Bottom-Up Deletion
	Which RB Property may be violated after deletion?
	Fixing the problem
	Terminology
	幻灯片编号 43
	Case 1 Diagram
	Bottom-Up Deletion�Case 1
	Case 2 diagram
	Bottom-Up Deletion�Case 2
	Case 3 Diagrams
	Bottom-Up Deletion�Case 3
	Case 4 diagrams
	Bottom-Up Deletion�Case 4
	The End

