Red-Black Trees

12/7/2012

Use of RB Tree

Red-black trees offer worst-case guarantees for insertion time, deletion
time, and search time. Not only does this make them valuable in time-
sensitive applications such as real-time applications, but it makes them
valuable building blocks in other data structures which provide worst-case
guarantees; for example, many data structures used in computational
geometry can be based on red-black trees, and the Completely Fair
Scheduler used in current Linux kernels uses red—black trees.

Red-black trees are also particularly valuable in functional programming,
where they are one of the most common persistent data structures, used to

construct associative arrays and sets which can retain prev1ous versions
after mutations. The persistent version of red—black trees requires O(logn)
space for each insertion or deletion, in addition to time.

2 12/7/2012

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Set_(computer_science)

A clip from Tarjan’s Paper

In this paper we apply the related concepts of amortized complexity and self-
adjustment to binary search trees, We are motivated by the observation that the
known kinds of efficient search trees have various drawbacks. Balanced trees, such
as height-balanced trees [2, 22], weight-balanced trees [26], and B-trees [6] and
their variants [5, 18, 19, 24] have a worst-case time bound of O(log ») per operation
on an n-node tree. However, balanced trees are not as efficient as possible if the
access pattern is nonuniform, and they also need extra space for storage of balance
information. Optimum search trees [16, 20, 22] guarantee minimum average access
time, but only under the assumption of fixed, known access probabilities and no
correlation among accesses. Their insertion and deletion costs are also very high.
Biased search trees [7, 8, 13] combine the fast average access time of optimum
trees with the fast updating of balanced trees but have structural constraints even
more complicated and harder to maintain than the constraints of balanced trees.
Finger search trees [11, 14, 19, 23, 24] allow fast access in the vicinity of one or
more “fingers” but require the storage of extra pointers in each node.

3 12/7/2012

A little history

e 1962: The 1dea of balancing a search tree 1s
due to Adel’son-Velski and Landis.

e 1970: Hopcroft introduced 2-3 trees. (B-tree 1s
a generalization of it)

e 1972: Bayer invented Red-black trees.

e 1978: Guibas and Sedgewick introduced the
red/black convention.

Red-Black Properties

e The red-black properties:
1. Every node is either red or black

2. The root 1s always black
3. Every leaf (NULL pointer) 1s black

o Note: this means every “real” node has 2 children

4. If anode 1s red, both children are black

o Note: can’t have 2 consecutive reds on a path

5. Every path from node to descendent leaf contains
the same number of black nodes

5 12/7/2012

Black-Height

e black-height: # black nodes on path to leaf

e What is the minimum black-height of a node
with height h?

e A: a height-h node has black-height > h/2

e Theorem: A red-black tree with n internal
nodes has height h <2 Ig(n+ 1)

m Proved by induction

RB Trees: Proving Height Bound

e Prove: n-node RB tree has height h <2 1g(n+1)

e (Claim: A subtree rooted at a node X contains
at least 2°1® _ 1 internal nodes

m Proof by induction on height h

m Base step: X has height 0 (1.e., NULL leaf node)
> What is bh(x)?

7 12/7/2012

RB Trees: Proving Height Bound

e Prove: n-node RB tree has height h <2 1g(n+1)

e (Claim: A subtree rooted at a node X contains
at least 2°1® _ 1 internal nodes

m Proof by induction on height h

m Base step: X has height 0 (1.e., NULL leaf node)
o What is bh(x)?
oA: 0
o So...subtree contains 2°h®) -]
— 20 _1
= 0 internal nodes (TRUE)

8 12/7/2012

RB Trees: Proving Height Bound

e Inductive proof that subtree at node X contains
at least 2°"® - 1 internal nodes

m Inductive step: X has positive height and 2 children
o Each child has black-height of bh(x) or bh(x)-1 (Why?)

o The height of a child = (height of X) - 1

o So the subtrees rooted at each child contain at least
26h() -1 _ 1 internal nodes

o Thus subtree at X contains
(26000 -1 - 1) + (20h09-1 - 1) + |
= 2020000-1 -] = 2bh() _ T nodes

9 12/7/2012

Proving Height Bound

e Thus at the root of the red-black tree:
n > 2bh(root) _ |
n>2v2_1
lg(n+1) > h/2
h<2lg(n+1)

Thus h = O(lg n)

12/7/2012

RB Trees: Worst-Case Time

e So we’ve proved that a red-black tree has
O(lg n) height

e Corollary: These operations take O(lg n) time:
s Minimum(), Maximum()

m Successor(), Predecessor()
m Scarch()

e Insert() and Delete():
m Will also take O(lg n) time
m But will need special care since they modify tree

12/7/2012

Red-Black Trees: An Example

e Color this tree:

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

12 12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert 8
= Where does it go?

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

13 12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert & a

= Where does it go?
= What color e 9

should it be? (8] (12)

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

14 12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert & a

= Where does it go?
= What color e 9

should it be? (8] (12)

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

15 12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert 11 e
= Where does it go? e 9

8) (2

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

16 12/7/2012

Red-Black Trees:

The Problem With Insertion

e Insert 11

= Where does it go?
= What color?

Red-black properties:
. Every node i1s either red or black

1
2. The root 1s always black
3.
4
5

. If a node is red, both children are black
. Every path from node to descendent leaf

Every leaf (NULL pointer) is black

contains the same number of black nodes

17

12/7/2012

Red-Black Trees:

The Problem With Insertion

e Insert 11

= Where does it go?

m What color?
o Can’t be red! (#4)

Red-black properties:
. Every node i1s either red or black

1
2. The root 1s always black
3.
4
5

. If a node is red, both children are black
. Every path from node to descendent leaf

Every leaf (NULL pointer) is black

contains the same number of black nodes

18

12/7/2012

Red-Black Trees:

The Problem With Insertion

e Insert 11

= Where does it go?

= What color?
o Can’t be red! (#4)

Red-black properties:
. Every node i1s either red or black

1
2. The root 1s always black
3.
4
5

. If a node is red, both children are black
. Every path from node to descendent leaf

o Can’t be black! (#5)

Every leaf (NULL pointer) is black

contains the same number of black nodes

19

12/7/2012

Red-Black Trees:

The Problem With Insertion

e Insert 11

= Where does it go?
= What color?

o Solution:
recolor the tree

Red-black properties:
. Every node i1s either red or black

1
2. The root 1s always black
3.
4
5

. If a node is red, both children are black
. Every path from node to descendent leaf

Every leaf (NULL pointer) is black

contains the same number of black nodes

20

12/7/2012

Red-Black Trees:

The Problem With Insertion

e Insert 10
= Where does it go?

Red-black properties:
. Every node i1s either red or black

1
2. The root 1s always black
3.
4
5

. If a node is red, both children are black
. Every path from node to descendent leaf

Every leaf (NULL pointer) is black

contains the same number of black nodes

21

12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert 10

= Where does it go?
= What color?

Red-black properties:

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (NULL pointer) is black

4. 1If anode 1s red, both children are black

5. Every path from node to descendent leaf
contains the same number of black nodes

22 12/7/2012

Red-Black Trees:
The Problem With Insertion

e Insert 10
= Where does it go?
= What color?

o A: no color! Tree
1s too 1mbalanced

o Must change tree structure
to allow recoloring

m Goal: restructure tree 1n
O(Ig n) time

23 12/7/2012

RB Trees: Rotation

e Our basic operation for changing tree structure
is called rotation:

rightRotate(y)

c . A
leftRotate(X)

A B B C

e Does rotation preserve inorder key ordering?

e What would the code for rightRotate()
actually do?

24 12/7/2012

RB Trees: Rotation

rightRotate(y)

C A
A B B C

e Answer: A lot of pointer manipulation
m X keeps its left child
m Y keeps 1ts right child
m X’s right child becomes y’s left child

m X’s and Y’s parents change

e \What Is the running time?

25 12/7/2012

Rotation Example

e Rotate left about 9:

Rotation Example

e Rotate left about 9:

Red-Black Trees: Insertion

e Insertion: the basic idea
m Insert X into tree, color X red
m Only r-b property 4 might be violated (if p[X] red)

o If so, move violation up tree until a place i1s found where
it can be fixed

m Total time will be O(lg n)

28 12/7/2012

RB Insert;: Case 1

if (y->color == RED) e Case 1: “uncle” 1s red
X->p->color = BLACK;
y->color = BLACK;
X->p->p->color = RED;
X = X=>p->p;

e In figures below, all A’s are
equal-black-height subtrees

Change colors of some nodes, preserving #5: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

29 12/7/2012

RB Insert;: Case 1

if (y->color == RED) e (Case 1: “uncle” 1s red
X->p->color = BLACK;
y->color = BLACK;
X->p->p->color = RED;
X = X=>p->p;

e In figures below, all A’s are
equal-black-height subtrees

Same action whether x is a left or a right child

30 12/7/2012

RB Insert: Case 2

if (x == x->p->right) e (Case2:
X = X==>p; m “Uncle” is black
leftRotate(x);

m Node X 1s a right child
// continue with case 3 code

e Transform to case 3 via a
left-rotation

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 5: all downward paths contain same number of black nodes

31 12/7/2012

RB Insert: Case 3

x->p->color = BLACK; o (ase 3:
x->p->p->color = RED; m “Uncle” 1s black
rightRotate(x->p->p); m Node X is a left child

e Change colors; rotate right

A A

Perform some color changes and do a right rotation
Again, preserves property 5: all downward paths contain same number of black nodes

32 12/7/2012

RB Insert: Cases 4-6

e Cases 1-3 hold if X’s parent 1s a left child

e If X’s parent 1s a right child, cases 4-6 are
symmetric (swap left for right)

rblnsert(x)
treelnsert(x);
x->color = RED;
// Move violation of #4 up tree, maintaining #5 as iInvariant:

while (X'=root X->p->color ==
IT (X->p == x->p->p->left)
y = X->p->p->right;
i1IT (y->color == RED)
X->p->color = BLACK;
y->color = BLACK;
X->p->p->color = RED;

>Case 1

X = X->p->p;)
else // y->color == BLACK
IT (X == Xx->p->right)

X = X=2p; - Case 2

leftRotate(X);)
x->p->color = BLACK;)
X->p->p->color = RED; » Case 3
rightRotate(X->p->p);)

else // X->p == X->p->p->right
(same as above, but with
“right” & “left” exchanged)

34 12/7/2012

rblnsert(x)
treelnsert(x);
x->color = RED;
// Move violation of #3 up tree, maintaining #4 as iInvariant:

while (X'=root X->p->color ==
IT (X->p == x->p->p->left)
y = X->p->p->right;
i1IT (y->color == RED)
X->p->color = BLACK;
y->color = BLACK;
X->p->p->color = RED;

»Case 1: uncle 1s RED

X = X->p->p;)
else // y->color == BLACK
IT (X == Xx->p->right)

X = X=2p; - Case 2

leftRotate(X);)
x->p->color = BLACK;)
X->p->p->color = RED; » Case 3
rightRotate(X->p->p);)

else // X->p == X->p->p->right
(same as above, but with
“right” & “left” exchanged)

35 12/7/2012

Red-Black Trees: Deletion

¢ And you thought insertion was tricky...

Red-Black Trees

Bottom-Up Deletion

Recall “ordinary” BST Delete

If vertex to be deleted 1s a leaf, just delete it.

If vertex to be deleted has just one child, replace 1t with that
child

Otherwise, if vertex Z has both a left and a right child. We
find Z’s successor U, replace Z’s value by U’s value and
then delete U (a recursive step, and Y must be a leaf or has
just one child).

38 12/7/2012

Bottom-Up Deletion

1. Do ordinary BST deletion. Eventually a
“case 17 or “case 2* will be done (leaf or just

one child). If deleted node, U, 1s a leaf,
think of deletion as replacing with the NULL

pointer, V. If U had one child, V, think of
deletion as replacing U with V.

2. What can go wrong??

U
V ()Y

Which RB Property may be viglated

1.

after deletion?
If U 1s red?

U

Not a problem — no RB properties violated

If U 1s black?

If U 1s not the root, deleting 1t will change
the black-height along some path

Fixing the problem

e Think of V (NULL pointer or U’s only child) as
having an “extra” unit of blackness. This extra
blackness must be absorbed into the tree (by a red
node), or propagated up to the root (without violating
the RB properties) and out of the tree.

e If V isred, then we color 1t black to make 1t absorb
the extra black. Otherwise, V 1s “double black™.

e There are four cases — our examples and “rules”
assume that V 1s a left child. There are symmetric
cases for V as a right child

41 12/7/2012

Terminology

e The node just deleted was U (Z’ successor!)

e The node that replaces 1t is V, which has an
extra unit of blackness @)

o The parent of Vis P }G’>\
e The sibling of V is S 1% @
‘ Black Node \@

Q Red Node A Red or Black and don’t care

12/7/2012

e 4 cases:
m Case 1: V’s sibling S is red; = Case 2/3/4

m Case 2: V’s sibling S 1s black; S’s both children
are black; 2 recursive or terminal

m Case 3: V’s sibling S 1s black; S’s left child 1s red;
S’s right child is black; = Case 4

m Case 4: V’s sibling S 1s black; S’s left child 1s
red/black; S’s right child is red; terminal case

43 12/7/2012

Case 1 Diagram

[eft Rotate on P

A
S&E—->P

V+‘ 6<ew Slbhng

Bottom-Up Deletion
Case 1

e V’ssibling, S, 1s Red
m [eft Rotation on P and recolor S & P

e NOT a terminal case — One of the other cases
will now apply

e All other cases apply when S 1s Black

Back to Case Map

12/7/2012

Case 2 diagram

p P+

Either extra black absorbed by P (P was Red, now case
done) or P now has extra blackness (P was black, now
recursive at P+.)

46 12/7/2012

Bottom-Up Deletion
Case 2

e V’s sibling, S, 1s black and has two black
children.

m Recolor S to be Red
m P absorbs V’s extra blackness

o If P 1s Red, we’re done

o If P 1s Black, it now has extra blackness and problem
has been propagated up the tree

Back to Case Map

47 12/7/2012

Rotate

Bottom-Up Deletion
Case 3

e S 1s Black, S’s right child 1s Black and S’s left
child 1s Red

m Right Rotate on S
m Swap color of S and S’s left child

m Now 1n case 4

Back to Case Map

12/7/2012

Case 4 diagrams

Left Rotate on P

Bottom-Up Deletion
Case 4

e S 1s black

e S’s RIGHT child is RED (Left child either
color)

m Rotate S around P

m Swap colors of S and P, and color S’s Right child
Black

e This 1s the terminal case — we’re done

Back to Case Map

12/7/2012

The End

	幻灯片编号 1
	Use of RB Tree
	A clip from Tarjan’s Paper
	A little history
	Red-Black Properties
	Black-Height
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	Proving Height Bound
	RB Trees: Worst-Case Time
	Red-Black Trees: An Example
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	RB Trees: Rotation
	RB Trees: Rotation
	Rotation Example
	Rotation Example
	Red-Black Trees: Insertion
	RB Insert: Case 1
	RB Insert: Case 1
	RB Insert: Case 2
	RB Insert: Case 3
	RB Insert: Cases 4-6
	幻灯片编号 34
	幻灯片编号 35
	Red-Black Trees: Deletion
	Red-Black Trees
	Recall “ordinary” BST Delete
	Bottom-Up Deletion
	Which RB Property may be violated after deletion?
	Fixing the problem
	Terminology
	幻灯片编号 43
	Case 1 Diagram
	Bottom-Up Deletion�Case 1
	Case 2 diagram
	Bottom-Up Deletion�Case 2
	Case 3 Diagrams
	Bottom-Up Deletion�Case 3
	Case 4 diagrams
	Bottom-Up Deletion�Case 4
	The End

