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Red-Black Trees
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Use of RB Tree

●
 

Red–black trees offer worst-case guarantees for insertion time, deletion 
time, and search time. Not only does this make them valuable in time-

 sensitive applications such as
 

real-time applications, but it makes them 
valuable building blocks in other data structures which provide worst-case 
guarantees; for example, many data structures used in

 
computational 

geometry
 

can be based on red–black trees, and the
 

Completely Fair 
Scheduler

 
used in current

 
Linux

 
kernels uses red–black trees.

●
 

Red–black trees are also particularly valuable in
 

functional programming, 
where they are one of the most common

 
persistent data structures, used to 

construct
 

associative arrays
 

and
 

sets
 

which can retain previous versions 
after mutations. The persistent version of red–black trees requires O(logn) 
space for each insertion or deletion, in addition to time.

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Set_(computer_science)
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A clip from Tarjan’s Paper
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A little history

●
 

1962: The idea of balancing a search tree is 
due to Adel’son-Velskii

 
and Landis. 

●
 

1970: Hopcroft
 

introduced 2-3 trees. (B-tree is 
a generalization of it)

●
 

1972: Bayer invented Red-black trees.
●

 
1978: Guibas

 
and Sedgewick

 
introduced the 

red/black convention.
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Red-Black Properties

●
 

The red-black properties:
1. Every node is either red or black
2.   The root is always black 
3.   Every leaf (NULL pointer) is black

○
 

Note: this means every “real”
 

node has 2 children

4.   If a node is red, both children are black
○

 
Note: can’t have 2 consecutive reds on a path

5.
 

Every path from node to descendent leaf contains 
the same number of black nodes
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Black-Height

●
 

black-height: # black nodes on path to leaf
●

 
What is the minimum black-height of a node 
with height h?

●
 

A: a height-h node has black-height 
 

h/2
●

 
Theorem: A red-black tree with n internal 
nodes has height h 

 
2 lg(n + 1)

■
 

Proved by induction
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RB Trees: Proving Height Bound

●
 

Prove: n-node RB tree has height h 
 

2 lg(n+1)
●

 
Claim: A subtree

 
rooted at a node x contains 

at least 2bh(x)
 

-
 

1 internal nodes
■

 
Proof by induction on height h 

■
 

Base step: x has height 0 (i.e., NULL leaf node)
○

 
What is bh(x)?
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RB Trees: Proving Height Bound

●
 

Prove: n-node RB tree has height h 
 

2 lg(n+1)
●

 
Claim: A subtree

 
rooted at a node x contains 

at least 2bh(x)
 

-
 

1 internal nodes
■

 
Proof by induction on height h 

■
 

Base step: x has height 0 (i.e., NULL leaf node)
○

 
What is bh(x)?

○
 

A: 0
○

 
So…subtree

 
contains 2bh(x) - 1

 
 

= 20

 
- 1 

= 0 internal nodes   (TRUE)
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RB Trees: Proving Height Bound

●
 

Inductive proof that subtree
 

at node x contains 
at least 2bh(x)

 
-

 
1 internal nodes

■
 

Inductive step: x has positive height and 2 children
○

 
Each child has black-height of bh(x) or bh(x)-1  (Why?)

○
 

The height of a child = (height of x) - 1
○

 
So the subtrees

 
rooted at each child contain at least 

2bh(x) -

 

1

 
-

 
1 internal nodes

○
 

Thus subtree
 

at x contains 
(2bh(x) -

 

1

 
-

 
1) + (2bh(x) -

 

1

 
- 1) + 1

 = 2•2bh(x)-1

 
- 1 = 2bh(x)

 
-

 
1 nodes  
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Proving Height Bound

●
 

Thus at the root of the red-black tree:
n 

 
2bh(root) - 1

n 
 

2h/2
 

- 1
lg(n+1) 

 
h/2

h 
 

2 lg(n + 1)

Thus h = O(lg
 

n)
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RB Trees: Worst-Case Time

●
 

So we’ve proved that a red-black tree has 
O(lg

 
n) height

●
 

Corollary: These operations take O(lg
 

n) time: 
■

 
Minimum(), Maximum()

■
 

Successor(), Predecessor()
■

 
Search()

●
 

Insert() and Delete():
■

 
Will also take O(lg

 
n) time

■
 

But will need special care since they modify tree
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Red-Black Trees: An Example

●
 

Color this tree: 7

5 9

1212

5 9

7

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

■
 

What color 
should it be?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

■
 

What color 
should it be?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Can’t be red! (#4) 12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Can’t be red! (#4)

○
 

Can’t be black! (#5)
12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Solution: 
recolor the tree

12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

■
 

What color?
12

5 9

7

8

11

10

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

■
 

What color?
○

 
A: no color! Tree 
is too imbalanced

○
 

Must change tree structure
 to allow recoloring

■
 

Goal: restructure tree in 
O(lg

 
n) time

12

5 9

7

8

11

10
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RB Trees: Rotation

●
 

Our basic operation for changing tree structure 
is called rotation:

●
 

Does rotation preserve inorder key ordering?
●

 
What would the code for rightRotate() 
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)
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rightRotate(y)

RB Trees: Rotation

●
 

Answer: A lot of pointer manipulation
■

 
x keeps its left child

■
 

y keeps its right child
■

 
x’s

 
right child becomes y’s

 
left child

■
 

x’s
 

and y’s
 

parents change
●

 
What is the running time?

y

x C

A B

x

A y

B C
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Rotation Example

●
 

Rotate left about 9:

12

5 9

7

8

11
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Rotation Example

●
 

Rotate left about 9:

5 12

7

9

118



28 12/7/2012

Red-Black Trees: Insertion

●
 

Insertion: the basic idea
■

 
Insert x into tree, color x red

■
 

Only r-b property 4 might be violated (if p[x] red)
○

 
If so, move violation up tree until a place is found where 
it can be fixed

■
 

Total time will be O(lg
 

n)
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RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●
 

Case 1: “uncle”
 

is red
●

 
In figures below, all ’s are 
equal-black-height subtrees

C
A D

 B

 
 

C
A D

 B

 
 x

y

new x

Change colors of some nodes, preserving #5: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1
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B

 
x

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●
 

Case 1: “uncle”
 

is red
●

 
In figures below, all ’s are 
equal-black-height subtrees

C
A D

  

C
A D

 
y

new x

Same action whether x is a left or a right child

B

 
x 

case 1
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B

 
x

RB Insert: Case 2

if (x == x->p->right)
x = x->p;
leftRotate(x);

// continue with case 3 code

●
 

Case 2:
■

 
“Uncle”

 
is black

■
 

Node x is a right child

●
 

Transform to case 3 via a 
left-rotation

C
A 

C
By

A

 
x 

case 2


y

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 5: all downward paths contain same number of black nodes
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RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

●
 

Case 3:
■

 
“Uncle”

 
is black

■
 

Node x is a left child

●
 

Change colors; rotate right

B
Ax



case 3C
B

A

 
x 

y C

 

Perform some color changes and do a right rotation
Again, preserves property 5: all downward paths contain same number of black nodes



33 12/7/2012

RB Insert: Cases 4-6

●
 

Cases 1-3 hold if x’s
 

parent is a left child
●

 
If x’s

 
parent is a right child, cases 4-6 are 

symmetric (swap left for right)
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rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #4 up tree, maintaining #5 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else   // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else    // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1

Case 2

Case 3
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rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #3 up tree, maintaining #4 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else   // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else    // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3
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Red-Black Trees: Deletion

●
 

And you thought insertion was tricky…
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Red-Black Trees

Bottom-Up Deletion
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Recall “ordinary”
 

BST Delete

1.     If vertex to be deleted is a leaf, just delete it.
2.     If vertex to be deleted has just one child, replace it with that 

child
3.      Otherwise, if vertex Z has both a left and a right child. We 

find Z’s successor U, replace Z’s value by U’s value and 
then delete U (a recursive step, and Y must be a leaf or has 
just one child).
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Bottom-Up Deletion

1.
 

Do ordinary BST deletion.  Eventually a 
“case 1”

 
or “case 2“

 
will be done (leaf or just 

one child).  If deleted node, U,  is a leaf, 
think of deletion as replacing with the NULL 
pointer, V.  If U had one child, V, think of 
deletion as replacing U with V.

2.
 

What can go wrong??

U

U

V
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Which RB Property may be violated 
after deletion?

1.
 

If U is red?
 

Not a problem –
 

no RB properties violated

2.
 

If U is black?
 

If U is not the root, deleting it will change 
the black-height along some path

U
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Fixing the problem

●
 

Think of V (NULL pointer or U’s only child) as 
having an “extra”

 
unit of blackness.  This extra 

blackness must be absorbed into the tree (by a red 
node), or propagated up to the root  (without violating 
the RB properties)

 
and out of the tree.

●
 

If V is red, then we color it black to make it absorb 
the extra black. Otherwise, V is “double black”. 

●
 

There are four cases –
 

our examples and “rules”
 assume that V is a left child.  There are symmetric 

cases for V as a right child
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Terminology

●
 

The node just deleted was U (Z’
 

successor!)
●

 
The node that replaces it is V, which has an 
extra unit of blackness

●
 

The parent of V is P
●

 
The sibling of V is S

Black Node

Red Node Red or Black and don’t care

Z

U

V

P

S
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●
 

4 cases:
■

 
Case 1: V’s sibling S is red;  Case 2/3/4

■
 

Case 2: V’s sibling S is black; S’s both children 
are black; recursive or terminal 

■
 

Case 3: V’s sibling S is black; S’s left child is red; 
S’s right child is black;  Case 4

■
 

Case 4: V’s sibling S is black; S’s left child is 
red/black; S’s right child is red; terminal case
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Case 1 Diagram

P

SV+
P

S

V+

Left Rotate on P

P

V+

S
Recolor 
SP

New   sibling
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Bottom-Up Deletion 
Case 1

●
 

V’s sibling, S, is Red
■

 
Left Rotation on P and recolor S & P

●
 

NOT a terminal case –
 

One of the other cases 
will now apply

●
 

All other cases apply when S is Black

Back to Case Map
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Case 2 diagram

P

SV+

P+

SV

Recolor and absorb

Either extra black absorbed by P (P was Red, now case 
done) or P now has extra blackness (P was black, now 
recursive at P+.)
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Bottom-Up Deletion 
Case 2

●
 

V’s sibling, S, is black and has two black 
children.
■

 
Recolor S to be Red

■
 

P absorbs V’s extra blackness
○

 
If P is Red, we’re done

○
 

If P is Black, it now has extra blackness and problem 
has been propagated up the tree

Back to Case Map
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Case 3 Diagrams

P

SV+

P

S
V+Rotate

P

S
V+

Recolor

Sibling Black;
Sibling’s Right Red
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Bottom-Up Deletion 
Case 3

●
 

S is Black, S’s right child is Black and S’s left 
child is Red
■

 
Right Rotate

 
on S

■
 

Swap color of S and S’s left child
■

 
Now in case 4

Back to Case Map
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Case 4 diagrams

P

SV+ P

S

V

Left Rotate on P

P

S

V

Recolor
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Bottom-Up Deletion 
Case 4

●
 

S is black
●

 
S’s RIGHT child is RED (Left child either 
color)
■

 
Rotate S around P

■
 

Swap colors of S and P, and color S’s Right child 
Black

●
 

This is the terminal case –
 

we’re done

Back to Case Map
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The End
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