- XISOE 0 A
- R OGAL T ik

2015411 H5H

s

——

Since this Information Iis unavailable to the
compiler, the machine code it generates for the
expression a[|] just takes the address of a (that Is,
the first cell of the array), adds | to it, and retrieves
the value stored In that address. (In fact, the same

xEressmn can also be written In C as *ga + | 2
which more closelz reflects Its |mEIementat|on } IN

contrast, when the PL/l compiler encounters the
corresponding expression, it will also generate
code to check that the index is indeed within the
legal bounds.

A 210

HSLHLACERSS “UUI” A1 BT IR 47
o W84S, hard wired primitive instructions and it combination
Instructions

HATRES I 5 XA HIFE 7 7

7] 725 1

PATH U “ R PR

it

Fit”

MR, WA Xn?

0 % VS BAK

0 BEORHY “Aim 7 574

A G “RR” &

Instruction pointer |P
1
1 Insirucsons
Instuctiocn regster IR
VOOPRY O SNL AN @) ’ —
Condition flag CF —
\ Diaka
CompuUlatan regisher AX

Ciariral processing wnit)/ Memory

FEALBBEETHEY (KB HETF—ENERS
‘B H WS OMBEETH B .

Ji7) 2
BT iEE

“implementation

()" R4 BB ?

0] 72

{E R tH— AN
HE i AT LLAE. 35

EIFKE

AT 8 &
A “ S

1144 F.

99 _‘/\ﬁ

wWiliE 5 ¢

= 1 |l'r
Algorithmic ™ <

A algorithm I

for Y from | to N do

(body-of-loop)

A program in
e high-level language

MYCOY (move constant 0 to location)
LOOP. CMPN,Y (compare values at locations N and ¥)
e compilation JEQ REST (if equal jump to statement labelled “REST")
ADC .Y (add constant | to value at location ¥)

éﬁ% ilati As | e age (translated-body-of-loop)
ompilation
1L JMP LOOP (jump back to statement labeled “LOOP")
| REST: (rest of program)
Apy machine code
. S -
) —-g - - Cﬂmptl}ter

Ho R e

— A R
Input: DIE—FEF EES) W5 MR,
Output: SinputsFri). A —MiEsE (HIRES) WEHREF.

BT | —— | gmpese . | BiRRE
X FERFwITES — flesfthy
"X P C++ - C =%

Pascal — C

A

o FEFP s T AR

o YRR
o JE9m A
o Ples s

while [i<18}{

¥

a=a+ 1i;
j_-|—|-;

-

LBE@_1:
« LOC 117 5
cmpl £18, -28(%rbp)
joge LBEE_3

BB#E2.
= LoC 118 9

Ltmpt:
mow 1 -24(%rbp), %eax
addl -28(%rbp), %eax
mow 1 weax, -24(%rbp)
« loc 119 9
mow 1 -Z8(%rbp), %eax
addl 51, %eax
mow 1 weax, —-20(%rbp)
« LoC 1285

jmp LBB8_1

ey TAEIMAE

Void Compiler(){

position = imitial + rate » G0

1

i . 'H'.' 2%

5TF idi,

T
(B, 13 (=) (ad. 2) {+) (i, 3} (=) (GO}
1
Bk A HT
- L]
(1, 1 4
id, 2 T
id 37 i |
1
T
1
(e, 1 G
id, 2} .
id, 3 inttofloat
1 G0
TS R
T
tl = inttofloat{60)
t2 = id3 = ¢l
t3 = id2 + t2
idi = t3
1
UL E
1
tl = 1d3 = &0.0
idl = id2 + t1
1
e E] e o B
Py b= I ey
1
LbF R2, 143
MULF R2, R2, #60.0
LbF R1i, id2
ADDF R1, RI, R2

Ri

wwd Ped —

pPosition
initial

rate

e

Source fRER

Program Interpreting
— by —
/\ Interpreter | Machine Language

W 1t 15 usually easier to write a “quick-and-dirty,” but reasonably useful, interpreter,
than 1t 1s to write a reasonable compiler;

B interpreter-driven execution yields a more traceable account of what 15 happening,

especially when working interactively with the computer through a terminal with
a display screen.

MM

»Z‘J%‘z%’(m i/J :,; L@
Rk H Al

/\rﬁr

=]

H(\

(=

ANE -
o \ >
/@/7 SN
/

{2

NSy

FIRS: AR IR R 2

[F] — %, RINLES AN R H 28 AN [vt
o FATIHEN==) FREF&IT

[m]— %, B HARASE R RN [F] 1)

o As the power of computers is harnessed in more and

more application areas, programmers encounter more
and more types of abstractions

o Each application area has its own set of concepts that
need to be incorporated into computer programs. This
can be done in many ways, one of which is the creation
of a variety of special-purpose programming languages,
which embody the concepts of specific areas.

EE AR, BARANARRE “RJ” QAR !

void bubblesort(int xa, int n)
{
inti, j, temp;
for(i=1;i <n;i++)
for (j=0;j <i; j++)
if (alj + 11 < a[j1)
{

temp = alj + 1];
alj + 11 =aljl;

aljl = temp;

bubblesort: procedure(a);
(define declare a(*) binary fixed;
(if declare i, j, femp binary fixed;
(do i = lbound(a) + 1 to hbound(a);
(do j = Ibound(a) to i — 1;
ifa(j + 1) < a(j) then
begin
temp=a(j + 1)
a(j +1) = a(j):
a(j) = temp;

38)))))

end;

hanoi(0, A end:
hanoi(N, ¢ end:
N = | end;
hanoi(N/, A, C, B, M1),
hanoi(NI, C, B, A, M2),
append(M1, [move(A, B)|M2], Moves).

o] BT
H42RIEBESHRIRAE? ANHE
A% HE S S B H
P 15 et

A programming paradigm is a way of
thinking about the computer, around
which other abstractions are built.

o] 7

H4 £ “programmina
paradigm”?

Hlas g

R-1

Program

AW Ty
el
Activation
Record > HE::EF'
Activation —|
Record
Activation
Record

" Activation
_ Record

The Run-time Stack

Static
Data

Conceptual View of the Imperative Model

von Neuman 2z #4
IR 5 4T

51k 42 5,

We think of the computer
as a collection of memory
cells, organized into many
types of data structures,
such as arrays, lists, and
stacks. Programs in this
approach are concerned
with building, traversing,
and modifying these data
structures, by reading
and modifying the values
stored in memory.

declare | UNIVERSITY_FILE,
2 STUDENT 10:),
3 STUDENT_NAME picture '(13)A’,
3 COURSE(30),
4 COURSE_CODE picture 'AAAADY
4 SCORE picture 0%,
3 STUDENT_ID picture "0900%
2 DEPARTMENT/(20),
3 DEPT_NAME picture '([1)A',
3 COURSE(RD),
4 COURSE_CODE picture 'AAAADY

B o W R 45 1) e St

ARFRER TT A
B IFHALEE YL LA) M,

UNIVERSITY_FILE

.

1

 —

STUDE ‘*-IT DEPARTMENT
4 TEACHER picture ‘(10)A"; / ‘ \ / \ _//w
PL/1H) 5+ STUDENT_ ‘*-IM‘[I t:l:ﬂ.lR'-?l STUDENT ID| |DEPT NAME| |COURSE _/*')
(15)A (1A \
E'{JLIF'.SI-_EE}DI 'IE}RI- COURSE_CODE | | TEACHER
AAAATT 99 AAAATH) T

CHf 5 I R i

bubblesort: procedurc(a);
declare a(+) binary fixed:
declare ¢, . temp hinary fixed:
do i = lbound(a) + | to hbound(a;
d_ﬂ-_ll = Ih-n-undfa]ltu! —1:
if a(j + 1) < aij) then

begin

fenm =.|:|"-_F- + ”'
alj + 1} =alyk
al f) = temyr,

PL/1I) %2 4= i

HA

void bubblesort(int m

{
mt i, 1, temp;
for (i =1;i <mi4++)
for (j =05 j <i; j++)
if (aly + 1] < als])

|

temp = aly + 1];
alj + 1] = al1l;
-I]'[_,I'] = lempr;

FECH 2R a2l

‘ %&&B@C’fjﬁﬁgjt I:{ E[/J “H A 9

1 7% simple _overflow.c

§ PSE B R R MBI
-

zan, alert?, evas, watercloud

Simple program to demonstrate buffer overflows

on the IA32 architecture.
/

K ¥ K ¥ Kk ¥ %

0 #include ¢stdio.h>
11 #include <string.h>
1. char largebuff[] =

13 *1234512345123451234512345==ABCD" ;
l'rl iit ;ain :véidg : e RB&T%'TZIK
16 char smallbuff([16]: - HLAE T L2

17 y strcpy (smallbuff, largebuff).

ML - A g
: R 845 B % A

Activation

- /C AREA LG A

|| e BEHEME, B
F=3 | 2B LHRE,

The Run-time Stack g;gﬂ — z % vaq é i &
Conceptual View of the Imperative Model i ﬁ é) a ! @ &
v 7

While this paradigm is close to the real
architecture of the computer, it is quite far
from its mathematical origins

] &R O:
Xt 4287

RV BRA-LISPIE = # 3B 65 A

(((Jchn A. Doe) 85000 (Senior Accountant) Accounting)
({Jane B. Bmith) 57000 Manager (Web Services))
((Michael Brown) 70000 Programmer (Systems Support)))

72 5 6 7 X,

(define (sum-salaries employees)
(if (oull? employess)
0
(+ (salary (first employees))
(sum-salaries (rest employees)))))

BB NF a7 (RHK) A—H4Q -list

‘ﬁﬂf?ﬁ-)(sabry PRIER?

K

(((John A. Do) 85000 (Senior Accountant) Accounting)
({Jane B. Smith) 97000 Manager (Web Services))
((Michael Erown) 70000 Programmer (Systems Support)))

(define (salary employee)
(first (rest employee)))

B, R E X

(define (sum-records records selector)

(if (null? records) iX 47T WA F 4 & F sum-
: salaries &g i ya2 & .

(+ (selector (first records))
(sum-records (rest records)))))

(define (sum-salaries employees)
(sum-records employees salary))

Unlike the formulation of this algorithm in Imperative language,
this definition is recursive. And, in fact, recursion is the central
and most natural control structure in LISP.

AN 2R, AN A RN AL

NAN

i

Activation _ |

Record — Heap 14
Activation ~ 7 ! ﬁﬁ g@F b@g@

Record

— e col lector” ?

Record

| Activation %ﬁ'ﬁ%% W%

. Record)
Static] functional

The Run-time Stack
Data

Functional programming: ‘G124 A A ?

%E Tﬁﬂ %}%éﬁfii‘l‘ﬁ’uﬁ)%T () RRHBORAA)

SRR - B - B

=74 7N J /T Y

SR AR [A A

hanca(0, 4, B, C, []).
Heap hanoi(N, A, B, C, Moves) «
A Single Database of =~ N=0NssN-I
Rules

“>~<_ hanoilNI, A, C, B, MI),
hanoa(NT, C, B, A, M2),
appendi M1, [movel A, B)|M2], Moves).

Program

Conceptual View of the Logic Model of Computation A logic programming %,
(‘$;27’ ﬁo “'i‘*‘k* » %gfl‘-—\ééo

PrologZ B it —A “B#ad” (EEIE) kLI,
C ATk R T, BRI L. WRHRAW, BFRRRESTRE
04T A, BFF Rinterpreter 8147 A o

—PNOOW 375

B WO BAA:

mioR: B ARSE I W Y i, 1
PEHEA BT (Z >R A s D ->PRdim e BA).
ANRTSEE ST — R R G, AR UL T 25 1)

check out?
T 12088 RS

eV i
= A

S

—*4“ﬁ@%H§%§:
W TT ELER g P se) B s

o The object-oriented paradigm views the computer’'s memory as being

composed of many objects, corresponding to the data structures of the
Imperative view.

B R R BAHIXRE B IR R

o FEEXT R RS R R ASHCEE, FFRIIA G ERAS

0 BB R IR BIHENER, IR BASISE — AV an B, @AY R
o WOARXS R ARAEBAA R E AT, AEBCHRME 55 NS5 5En, IEENBA SN B
0 AU G B2 WARXS RIS, FEERBAS 2 — DL E

public class Linkable

{ public interface Queue public void add(Object x)
private Object _item; { {

private Linkable _next: boolean empty(); Linkable new_back = new Linkable(x);

Object front():; if (_front == null)
public Linkable(Object x) void add(Object x): {

{ void remove(); _front = new_back;
_item = Xx; } _back = new_back:
_next = null; }

} else

public Object item() public class LinkedQueue implements Queue {

{ { _back.set_next(new_back):
return _item: private Linkable _front = null, _back = nul _back = new_back:

}

public boolean empty()) }

public Linkable next() {

{ return _front == null; public void remove()
return _next: } {

} _front = _front.next();

public Object front())

public void set_next(Linkable next) {)

{ return _front.item();

_next = next; }

}

OOH K &

Such a class describes what a queue
can do, but not how it does it. What Is
nice about this distinction Is that the
“what” is exactly the information that
other classes need in order to use
queues; they don’t really need the “*how.”

‘ Mimperative 2| object-oriented

An important offshoot of imperative programming 1s the well-known object-
oriented programming paradigm. The major ingredients in an imperative program
are the functions (or subroutines) that build and modify data structures; the func-
tions are active, and the data structures are passive. The object-onented paradigm, in
contrast, tums the picture on its side. It views the computer's memory as being com-
posed of many objects, corresponding to the data structures of the imperative view.
Each object has an associated set of operations 1t can carry out, and the execution of
the program consists of objects sending messages that request operations from one
another, getting responses, and further processing the results to sabisfy their own
callers. In this view, objects are active, and the functions from the imperative view
have been reduced to passive messages.

It

should come as no surpnse that the object-onented paradigm has developed out of
languages for the simulation of real-world processes.

7] R 11 -

PRIERBXA)EL? B2 f iRk
I M) 0 R EAG A STAT, i
3] T t& g imperative 5 7% K &K f&E ?

‘ A Final Remark

A final remark here concerns the universality of programming languages. In a
certain technical sense, all the programming languages discussed here. and for that
matter virtually all others tod, are equivalent in their expressive power. Any algonith-
mic problem solvable in orfe language 1s, in principle, solvable in any other language,
too. The differences between languages are pragmatic, and involve appropriateness
for certain applications, clarity and structure, efficiency of implementation, and
varying algorithmic/ways of thinking. Given the significant differences between
programming langtages this might come as something of a surprise.

/
v

So-called “Turing complete” language

