Distances in Hamming space

钱洛文

151242035

Metric space (M, d)

$d: M \times M \rightarrow \mathbb{R}$

1. $d(x, y)=0$ iff $x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, z)<=d(x, y)+d(y, z)$

Corollary: $\mathrm{d}(\mathrm{x}, \mathrm{y})>=0$

Hamming space

$\{0,1\}^{\wedge} \mathrm{N}$

P-norm: $\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$.

- $p<1$: Subadditivity does not hold
- $p=1$: Manhattan distance -> Hamming distance
- $p=2$: Euclidean distance
- $p \rightarrow+\infty$: Chebyshev distance
- $\left(|x 1|+|x 2|^{\wedge} 2+|x 3|^{\wedge} 3+|x 4|^{\wedge} 4+\ldots+|x n|^{\wedge} n\right)^{\wedge} k$

Levenshtein/edit distance

- Insertion
- Deletion
- Substitution
- Less than or equal to hamming distance

Distances in undirected connected graph

- Complete graph: Discrete metric, $d(x, y)=1$
- Hypercube: Hamming distance
- Ring:

$$
d(x, y)=\min \{x-y, y-x\}\left(\bmod 2^{\wedge} N\right)
$$

- Random maze

Thanks!

