7t 5 A e B g — e AR 211
- RN

2019F05H 06 H

Part |
HRYESVE

: @ @ @

o |
., . @\@
g ¢

° A

At aRASAAZAL?

Binary-Search-Tree Property

Let x be a node in a binary search tree. If y 15 a node in the left subtree
of x, then y.key < x.key. 1f y 1s a node in the right subtree of x, then

y.key = X.key.
] 2

[NORDER-TREE-WALK (x) IR BE R B IX AN 1 FE X
I if x 5 NIL - —/‘binary search
7 INORDER-TREE-WALK (x./eft) 4=

3 print x.key tr@@&ﬂ‘ m%% ﬂ%"
4 INORDER-TREE-WALK (x.right) iz b5 M BST K14 5

%%%%ﬁfﬁgﬁ
R4 R?

Properly Drawn Tree
50 60,
D G

In a properly drawn

tree, pushing forward

to get the ordered list.

“F5m"BSTRIC A =L 1ERY

[f x 15 the root of an n-node subtree, then the call INORDER-TREE-WALK (x)
takes G(n) time.

We use the substitution method to show that T(n) = O(n) by proving that
I'(n)<(c+d)n+c.Forn=0,wehave (c+d)-0+c=c=T(0). Forn >0,
we have
I'n) < Tk)y+T(n—-k-1)+d

(c+d)k+c)+((c+d)n—k—-1)+c)+d
= (c+dn+c—(c+d)+c+d
(

¢c+dn+ec, ‘ .
A2 REF)24k

FE? HERE BRI

TREE-SEARCH (x, k) ITERATIVE-TREE-SEARCH (x, k)
1 ifx == NIL or k == x.key 1 while x £ NIL and k # x.key
2 return x 2 itk < x.key

3 ifk < x.key 3 x = x.left

4 return TREE-SEARCH (x.left, k) 4 else x = x.righi

5 else return TREE-SEARCH (x.right k) 5 return x

BSTq:I nlu\m "qu_é"
15

] 74 -
@ REe RS S KA, R
@ B TINmEIE, K5l
%QI;[E::H’JE‘LB%?

H 2T, yRNIL?

TREE-SUCCESSOR (x)
EW%REETFHE R DT, RE-

1 if x.right = NIL
[O) 2 return TREE-MINIMUM (x.right)
3 /y=Xx.p)
Q R/? 4 |while y % NIL and x == y.right
\Q\\y 5 X =Y
A 6 y = y.p
O\OX 7 \return y Y,

] B35 -

FHBSTSEIA SRS, A4
%ggﬁTree-Suggessgr?

R wREEMA 2B TR ?

TREE-INSERT(T.)
1 y = NIL

m @U 2 x = T.root
i 3 | while x # NIL |
4 y=x BN E— R R F
%H/ %E ; if 2.key < x.key
A 6 x = x.lefi

7 else x = x.right
"{RWH -5

9 if y==NIL
w% Eﬁm 10 T.root = 2 // tree T was empty

11 elseif Z.key < v.key

Aﬁ%? :i y.lefi =z

3 else y.right = 2

5 7 -
H 2180 T MRS R e 4k B K
iR, XXM BR2RAE T RAT 2 5]

TRANSPLANT(T, u,v)

1 ifu.p==NIL il
2 T.root = v Il:ﬂ)@8 .

; elseifl u ==u.p.lefi
; 4 u.p.left = v %ﬂﬂ‘u }5 EI/]
5 else u.p.right = v E?ij?’?

6 ifv #NIL

A YA
7 v.p = u.p J/E‘/AF:H)E ?

||||
N
4

)

Z.p O

—

MBSTARHIER

BAXFME L E TS A A THREIET

(c)

1 KA MR TE é’J

e ¥)\::5 éIZE 7% ZCI: 7‘5 g % - = I

; \ (EPE%WQ‘VFE’«)

If z has two children, then we find z's successor y —which must be in z's right
subtree— and have y take Z’s position in the tree. The rest of z’s onginal right
subtree becomes y’'s new nﬂht subtree, and Z’s left subtree becomes y’s new
left subtree. This case is the tricky one bexause. as we shall see, it matters
whether y is Z's nght child.

a8FEIFH—=

q q q
d --------- - ﬁ: - b I ¥
fofeL 10 L D) B
\)\% X ,Q\ x IQ\
NIL x ' ‘ ' '
N\ else y = TREE-MINIMUM (Z.right)
N (ifyp#:)
WSS, xy.rix Ny TRANSPLANT(T, y, y.right)
=NER "’_7r" y.right = z.right
KEAWHE T . v.right.p = vy Y,

TRANSPLANT(T.Z.v)
v.lefi = z.lefi
v.lefi.p =y

7] 9
BSTx &5 He WA Rt
A, jwr/ -

F #4142 B A £ 42)

Part Il
ARV

Red-Black Property

A red-black tree is abmary tree that satisfies the following red-black properties:
1. Everynode is either red or black.
2. The root is black.
3. Every leaf (NIL) 1s black.
4. If anode is red, then both its children are black.
5

. For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.

] 3i10.

PREEIR — T EEX R W P AE— AR B Bl B A A%
PEG? R4 R B R approximately balanced?

6N RRIZI SRR

6 poorest balancing
® 60
Black edge 50 ‘@
./ o °
zﬂg &
® ‘ ‘

Black-Depth Convention

All with the same
largest black depth: 2

T ERMEERN LR

B [ect T be ared-black tree with n internal nodes, the height of
T in the usual sense 1s at most 21g(n+1).

— GIH: POOyRA) 5 2 /D A5 20he0- I Py B A . GRS 53R
7 oy A AN RAUE Y]

To complete the proof of the lemma, let & be the height of the tree. According
to property 4, at least halt the nodes on any simple path from the root to a leaf, not
including the root, must be black. Consequently, the black-height of the root must
be at least h/2; thus,

1122}'/2—1.

Moving the | to the left-hand side and taking logarithms on both sides yields
lg(n + 1) > h/2,0rh <2lg(n +1). o

5] 11

Red-Black# f)Dynamic Set
Operation 5—BSTHIA 4
F5AEZA? 2la(n+1): XS
WHA 2B X?

5] f12

MR ATAE IR W BT
NAERERER, 52
% A 2] PLIX AR ?

Improving the Balancing by Rotation

‘The node group \
to be rotated

* o
~
~
~
~
~
~
~
~
~
~
~
~

The middle subtree
changes parent

|

7] 213

EL BN HHATLR SE—
RBST A1 4RI

REEAERINIE,

Influences of Insertion into an RB Tree

B Properties 1, 3, 5:
— No violation if inserting a red node.
B Properties 2, 4:

Critical clusters(external
nodes excluded), which
originated by color violation,
with 3 or 4 nodes

20 4..@. .@

Inserting 70\‘

AR] —TF : PER2A AT A2 AL IR? - e

Repairing 4-node Critical Cluster

No new critical
cluster occurs,
inserting finished.

Color flip:

A
Root of the critical @\
cluster exchanges @/ @
1 ; 1 4 :o o

color with its subtrees
e © ¢ ©

Repairing 4-node Critical Cluster

2 more insertions \

Critical cluster

New critical
cluster with 3
nodes.

Color flip
doesn’t work,

Why?

Patterns of 3-Node Critical Cluster

B N
A M R M R
\ \

Shown as properly

A% SO

Repairing 3-Node Critical Cl

All into one
pattern

Root of the critical

cluster is changed to _ _
M, and the

parentship is II‘ |

adjusted accordingly 3

The incurred critical
cluster is of pattern A

—
/’

Deletion: Logical and Structral

Z: to be deleted logically

y: tree successor of u, to be) /N \TTiaht subt S
deleted structurally, with " S T {'9 SIU ,reeSO :
information moved into u O replacing

Deletion in a Red-Black Tree

To be deleted

one

Imbalance of Black Height

¢ o
Black height has
_J to be restored
' deleting

o) FiA:

AL A b BB, 412 15
g AN LY i

[f node y was black, three problems may arise, which the call of RB-DELETE-
FIXUP will remedy. |Firsty 1f y had been the root and a red child of y becomes the
new root, we have violated property 2. i both x and x.p are red, then
we have violated property 4. {Third Jmoving y within the tree causes any simple
path that previously contained y to have one fewer black node. Thus, property
15 now violated by any ancestor of y in the tree.

"WE" E
BRES,

o B v) new x = T.root

%%Axﬁia@@

RIMEAK

BTC pp.289-: ex.12.1-2, 12.1-5

BTC pp.293-: ex.12.2-5, 12.2-8, 12.2-9
BTC pp.299-: ex.12.3-5

BTC pp.303-: prob.12-1

BTC pp.311-:ex.13.1-5, 13.1-6, 13.1-7
BTC pp.313-: ex.13.2-2

BTC pp.322-: ex.13.3-1, 13.3-5

BTC pp.330-: ex. 13.4-1, 13.4-2, 13.4-7

