s AMTTiE

— JHEE4E 3T E 6/

AT B ARYR

* DoritS. Hochbaum, David B. Shmoys. Using Dual Approximation
Algorithms for Scheduling Problems: Theoretical and Practical Results.
Journal of the ACM, 34(1):144—162, 1987.

] @1:. dual approximation algorithms

o XA HRERMBEMS, VRN BB AR AR D ER |y

(i) to design a dual polynomial-time approximation scheme® (dual PTAS)
for the bin-packing problem (BIN-P), and

Step 1: Use the method of dynamic programming to design a polynomial-
time algorithm DPB-P for input instances of BIN-P that contain
a constant number of different values of r;s (i.e., the input in-
volves a lot of multiple occurrences of some values ;).

Step 2: Apply DPB-P (in a similar way as for the knapsack problem in
Section 4.3.4) to obtain an h-dual PTAS for the input instances
of BIN-P that do not contain “very small” r;s.

Step 3: Use the above h-dual PTAS to design an h-dual PTAS for the
general BIN-P.

(ii)) to use the dual PTAS for the BIN-P to design a PTAS for the makespan
scheduling problem (MS).

b 2. PTAS for MS

* BIN-PHIMS & air] A B354 11 ?

Optg:.p (% %2- ,,,,, %) < m & Optys(I,m) < d.
o HEIEBIN-PRIEILZ G, WTRAEMS?
— NN DR 2
— WIEBIN-PHIEIER NG AT, SRR EMSRESS 2] 1T fRng ?
— RHERAEA4.3.6.7 1152

Algorithm 4.3.6.7.

Input: ((I,m),e), where I = (py,...,pn), forsome n € N, py,...,pn, m
are positive integers, and £ > (.
Step 1: Compute ATLEAST = max {X >""_, p;,max{p1,...,Pn}}:
Set LOWER := ATLEAST,
UPPER :=2- ATLEAST,
k = logy(4/¢)].
Step 2: fori=1to kdo
do begin d := $(UPPER + LOWER);
call Bin-PTAS, /; on the input (B 22, B
¢ := cost (Bin-PTAS, , (&,....2))
if ¢ > m then LOWER :=d
else UPPER :=d

i

afF

end
Step 3: Set d* := UPPER;
call Bin-PTAS, /; on the input (&,..., 52).

Output: Bin-PTAS,, (&,..., E2).

7] Bi3: dual PTAS for BIN-P (1)

Step 1: Use the method of dynamic programming to design a polynomial-
time algorithm DPB-P for input instances of BIN-P that contain
a constant number of different values of r;s (i.e., the input in-
volves a lot of multiple occurrences of some values r;).

PR B A B 2 R 3 A 2 1 e 2

Bin-P(m1,...,ms) =

Ts) Zs:miqtil}'

=1

1+ min {Bin-P(ml—ml,...,m

X1jesey Xy

o VRFAREEVRA3.6.17 107 KA E SR L /?

Algorithm 4.3.6.1 (DPB-P,).

Input: q,...,¢s, n1,...,ns, where g; € (0,1] for ¢ = 1,...,s, and
ny,...,Ns are positive integers.

Step 1: BIN-P(0,...,0) :=0;
Bin-P(hy,...,hs) := 1 for all (hy,...,hs) € {0,...,n1} X --- X
{0,...,ns} such that 37, hig; <land 3.;_, h; > L

Step 2: Compute Bin-P(m,,...,m,) with the corresponding optimal solu-
tion T'(my, ..., ms) by the recurrence (4.61) for all (m,,...,m,) €
{0,”.,5’11} Koo X {0,...,1’13}.

Output: BIN-P(n4,...,n,), T(m1,...,mg).

One can easily observe that the number of different subproblems
Bin-P(m;,...,ms) of Bin-P(nq,...,ns) is

5 g
Ny -MNg <+ Ns < (Zﬂ) —_— (E)-5

S 8

Thus, the time complexity of Algorithm 4.3.6.1 (DPB-P) is in O((-’})E”), i.e.,
it i1s polynomial in n.

7] Bi3: dual PTAS for BIN-P (2)

Step 2: Apply DPB-P (in a similar way as for the knapsack rpmblem in
Section 4.3.4) to obtain an h-dual PTAS for the input instances
of BIN-P that do not contain “very small” r;s.

o XFHNAM T EFERIAL T ?
» IRIRARELILA.3.6.2 7 17
o ‘BENM4EBin-P Hh-dual e-IT A FEVE?

Algorithm 4.3.6.2 (BP-PTA,).

Input:
Step 1:

Step 2:

Step 3:

(q1,92,...,Gn) Wheree <@ <---<qgp < 1.
Set s := [log,{1/¢)/e];

11 = £, and
!j = tj—1 (1+E) forj=2,3,...,8;
lot1 =1.

{ This corresponds to the partitioning of the interval (g, 1] into s subin-

tervals (31,12], (52,33], Ceey (13, £3.|_1].}
for i =1 to s do

do begin L, .= {q1,...,q,} N (lialiH]?

n; 1= | L]
end
{We consider that every value of L; is rounded to the value /; in what
follows.}

Apply DPB-Pg on the input (I1,1ls,...,ls,n1,n0,...,n4).

10

To prove that BP-PTA, is an h-dual e-approximation algorithm for
Bin-P., we have to prove that, for every input I = (¢1,¢2,...,qn), € < q <
v < gp < 1, the following two facts hold:

(i) r = cost(Ty,...,T;) = Bin-P(ny,...,ns) < Optg;p(l), where (T, ...,
T) is the optimal solution for the input Round(I) = (I1,...,ls,n1,...,ns)
computed by BP-PTA, [T; is the set of the multiplicatives of the indices
of the values packed in the ith bin], and

(if) for every j=1,....7, 3 e, da < 1 e

The fact (i) is obvious because Round(I) can be considered as (p1,...,pn),

where p; < ¢; for every i € {1,...,n}.
Since DPB-P (Round(I)) < Optg;,-p({), we obtain

Bin-P(ny, ..., ny) = Optg,-p(Round(l)) < Optgy p(l).

11

To prove (ii), consider an arbitrary set of indices T' € {Ty,Ts,...,Tr}.
Let x = (x,...,2,) be the corresponding description of the set of indices
assigned to this bin for Round(l). We can bound EjET g; as follows:

qu < Zmz i+l = Zmzl +Z$1. H—l l;) < 1+z$%([1+1 (4 62)

JjeT i=1 i=1 =1
Since I; > ¢ for every i € {1,..., s}, the number of pieces in a bin is at most
1], i€

e | 15

g:ri < EJ . (4.63)

Let, for i = 1,..., 8, a; be the fraction of the bin T filled by values of size [;.
Obviously,

7 < % (4.64)
for every 1 € {1,2,..., s}. Inserting (4.64) into (4.62) we obtain

8

g < 14 @il ~ k)

JET (4.62) i=1
s a;
< —it1 =
(4._64)1-1_,,2{ (liva — 1)

= 1+Z[Gi'h—;l—&i]
1+Z (z+l_)
= 1+Za,, E=1+¢€- Za,—1+s

i=1

12

7] Bi3: dual PTAS for BIN-P (3)

Step 3: Use the above h-dual PTAS to design an h-dual PTAS for the
general BIN-P.

o NIRRT AL T ERER 4 ZEALFE 2
o URIERMAEEEA3.6.4 7 1E?
o B N4 ZBIN-PHh-dual PTAS?

13

Algorithm 4.3.6.4 (Bin-PTAS).

Input:

Step 1:
Step 2:

Step 3:

(I,€), where I = (q1,q2,---,qn), 0 <1 < g2 < -+ < gn < 1,
e € (0,1).

Findtsuchthat g1 < g2 <... <@g <e< g1 < G2 <+ :
Apply BP-PTA, on the input (g;+1,...,¢n). Let T = (T7,..)
be the output BP-PTAE((]{+] e ,qn).

For every i such that > jer, 4 <1 pack one of the small pieces from
{q1,..-,q;} into T} until 23;5-31 g; > 1forallje{1,2,...,n}.

If there are still some small pieces to be assigned, take a new bin and
pack the pieces there until this bin is overfilled. Repeat this last step
several times, if necessary.

< dn
ey I

14

Proof. First, we analyze the time complexity of Bin-PTAS. Step 1 can be
executed in linear time. (If one needs to sort the input values, then it takes
O(nlogn) time.) Following Lemma 4.3.6.3 the application of BP-PTA, on the
input values larger than runs in time polynomial according to n. Step 3 can
be implemented in linear time.

Now we have to prove that for every input (7,€), I = (q1,..-,qn), € € (0,1),

(i) cost(Bin-PTAS(/,¢)) < Optg;,-p({), and
(ii) every bin of Bin-PTAS(/,¢) has a size of at most 1 + ¢ .

The condition (ii) is obviously fulfilled because BP-PTA. is an h-dual &-
approximation algorithm, i.e., the bins of BP-PTA.(g;+1,...,¢r) have a size
of at most 1 + £. One can easily observe that the small pieces q,,...,q; are
added to BP-PTA.(g;+1,...,¢n) in Step 3 in such a way that no bin has a
size greater than 1 + €.

To prove (i) we first observe that (Lemma 4.3.6.3)

OptBin—P(Qi+l yooos 1"-}11) > CﬂSt(BP*PTﬁE(qu yuwey qn))

Now, if one adds a new bin in Step 3 of Bin-PTAS, then it means that all bins
have sizes larger than 1. Thus, the sum of the capacities (sizes) of these bins
is larger than its number and so any optimal solution must contain one bin
more. U

15

il
Y

IR PR Vi (V= 7S

+ PRIGIERR LR ? e ZE G et A
- D Z TS
- G -FRSI
- R
— AR
- PULELE
— PTAS
— stk
— XHBIL

