3-3 Amortized Analysis

Jun Ma

majun@nju.edu.cn

October 10, 2020

TC 17.1-3 I

Suppose we perform a sequence of n operations on a data structure in which the cost of the i-th operation is

$$
c_{i}= \begin{cases}i & \text { if } i=2^{k} \\ 1 & \text { otherwise }\end{cases}
$$

Use aggregate analysis to determine the amortized cost per operation.

Aggregate analysis

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\sum_{1 \leq i \leq n} c_{i}=\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i}
$$

Aggregate analysis

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1)
\end{aligned}
$$

Aggregate analysis

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1)
\end{aligned}
$$

Aggregate analysis

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1) \\
& =O(n)
\end{aligned}
$$

Aggregate analysis

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1) \\
& =O(n)
\end{aligned}
$$

- So $O(1)$ cost per each operation.

TC 17.2-2

Suppose we perform a sequence of n operations on a data structure in which the cost of the i-th operation is

$$
c_{i}= \begin{cases}i & \text { if } i=2^{k} \\ 1 & \text { otherwise }\end{cases}
$$

Use accounting method to determine the amortized cost per operation.

Accounting method

$$
c_{i}^{\prime}= \begin{cases}2 & \text { if } i=2^{k} \\ 3 & \text { otherwise }\end{cases}
$$

We still have to show $\forall n\left(\sum_{i \leq n} c_{i} \leq \sum_{i \leq n} c_{i}^{\prime}\right)$

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1) \\
& \leq 3 n-\lfloor\log n\rfloor-1 \\
\sum_{1 \leq i \leq n} c_{i}^{\prime} & =\sum_{i \in C} c_{i}^{\prime}+\sum_{i \notin C} c_{i}^{\prime}
\end{aligned}
$$

Accounting method

$$
c_{i}^{\prime}= \begin{cases}2 & \text { if } i=2^{k} \\ 3 & \text { otherwise }\end{cases}
$$

We still have to show $\forall n\left(\sum_{i \leq n} c_{i} \leq \sum_{i \leq n} c_{i}^{\prime}\right)$

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1) \\
\leq & 3 n-\lfloor\log n\rfloor-1 \\
\sum_{1 \leq i \leq n} c_{i}^{\prime} & =\sum_{i \in C} c_{i}^{\prime}+\sum_{i \notin C} c_{i}^{\prime} \\
& =2(\lfloor\log n\rfloor+1)+3(n-\lfloor\log n\rfloor-1)
\end{aligned}
$$

Accounting method

$$
c_{i}^{\prime}= \begin{cases}2 & \text { if } i=2^{k} \\ 3 & \text { otherwise }\end{cases}
$$

We still have to show $\forall n\left(\sum_{i \leq n} c_{i} \leq \sum_{i \leq n} c_{i}^{\prime}\right)$

- Let $C=\left\{i \mid i<=n, i=2^{k}\right.$ for some $\left.k\right\},|C|=\lfloor\log n\rfloor+1$

$$
\begin{aligned}
\sum_{1 \leq i \leq n} c_{i} & =\sum_{i \in C} c_{i}+\sum_{i \notin C} c_{i} \\
& =\left(1+2+\cdots+2^{\lfloor\log n\rfloor}\right)+(n-\lfloor\log n\rfloor-1) \\
& =2^{\lfloor\log n\rfloor+1}+(n-\lfloor\log n\rfloor-1) \\
\leq & 3 n-\lfloor\log n\rfloor-1 \\
\sum_{1 \leq i \leq n} c_{i}^{\prime} & =\sum_{i \in C} c_{i}^{\prime}+\sum_{i \notin C} c_{i}^{\prime} \\
& =2(\lfloor\log n\rfloor+1)+3(n-\lfloor\log n\rfloor-1) \\
& =3 n-\lfloor\log n\rfloor-1
\end{aligned}
$$

TC 17.4-1

Suppose that we wish to implement a dynamic, open-address hash table.

- Why might we consider the table to be full when its load factor reaches some value α that is strictly less than 1 ?
- Describe briefly how to make insertion into a dynamic, open-address hash table run in such a way that the expected value of the amortized cost per insertion is $O(1)$.

TC 17.4-1

Suppose that we wish to implement a dynamic, open-address hash table.

- Why might we consider the table to be full when its load factor reaches some value α that is strictly less than 1 ?
- Describe briefly how to make insertion into a dynamic, open-address hash table run in such a way that the expected value of the amortized cost per insertion is $O(1)$.

```
Corollary 11.7
Inserting an element into an open-address hash table with load factor }\alpha\mathrm{ requires at most \(1 /(1-\alpha)\) probes on average, assuming uniform hashing.
```

Answer

- Expanding when $\alpha \geq 0.75$.
- Contracting when $\alpha \leq 0.25$.

Answer

- Expanding when $\alpha \geq 0.75$.
- Contracting when $\alpha \leq 0.25$.
- Potential function:

$$
\Phi_{i}= \begin{cases}\frac{8}{3} n u m_{i}-\text { size }_{i} & \text { if table is at least half full } \\ \frac{1}{2} \text { size }_{i}-n u m_{i} & \text { if table is less than half full }\end{cases}
$$

Answer

- Expanding when $\alpha \geq 0.75$.
- Contracting when $\alpha \leq 0.25$.
- Potential function:

$$
\Phi_{i}= \begin{cases}\frac{8}{3} n u m_{i}-s i z e_{i} & \text { if table is at least half full } \\ \frac{1}{2} s i z e_{i}-n u m_{i} & \text { if table is less than half full }\end{cases}
$$

- If the i-th insertion does not lead to expanding

$$
\begin{aligned}
& \text { num }_{i}=\text { num }_{i-1}+1 \\
& \operatorname{size}_{i}=\text { size }_{i-1}
\end{aligned}
$$

Answer

- Expanding when $\alpha \geq 0.75$.
- Contracting when $\alpha \leq 0.25$.
- Potential function:

$$
\Phi_{i}= \begin{cases}\frac{8}{3} n u m_{i}-s i z e_{i} & \text { if table is at least half full } \\ \frac{1}{2} s i z e_{i}-n u m_{i} & \text { if table is less than half full }\end{cases}
$$

- If the i-th insertion does not lead to expanding

$$
\begin{aligned}
& \text { num }_{i}=\text { num }_{i-1}+1 \\
& \operatorname{size}_{i}=\operatorname{size}_{i-1}
\end{aligned}
$$

$$
\begin{aligned}
E\left(c_{i}^{\prime}\right) & =E\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right) \\
& = \begin{cases}E\left(c_{i}\right)+8 / 3 \leq 4+8 / 3 & \text { if table is at least half full } \\
E\left(c_{i}\right)-1 \leq 4-1=3 & \text { if table is less than half full }\end{cases}
\end{aligned}
$$

- If the i-th insertion leads to expanding
- If the i-th insertion leads to expanding

$$
\begin{aligned}
& \text { num }_{i}=\text { num }_{i-1}+1 \\
& \text { size }_{i}=2 \text { size }_{i-1} \\
& \text { num }_{i-1}=3 / 4 \text { size }_{i-1}
\end{aligned}
$$

- If the i-th insertion leads to expanding

$$
\begin{aligned}
& \text { num }_{i}=\text { num }_{i-1}+1 \\
& \text { size }_{i}=2 \text { size }_{i-1} \\
& \text { num }_{i-1}=3 / 4 \text { size }_{i-1}
\end{aligned}
$$

$$
\begin{aligned}
E\left(c_{i}^{\prime}\right) & =E\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right) \\
& =E\left(c_{i}\right)+\left(1 / 2 \text { size }_{i}-\text { num }_{i}\right)-\left(8 / 3 \text { num }_{i-1}-\text { size }_{i-1}\right) \\
& =E\left(c_{i}\right)-\text { num }_{i} \\
& \leq 4+\text { num }_{i}-\text { num }_{i}=4
\end{aligned}
$$

TC Problem 17.3 (Amortized weight-balanced trees)

Consider an ordinary binary search tree augmented by adding to each node x the attribute x.size giving the number of keys stored in the subtree rooted at x. Let α be a constant in the range $1 / 2 \leq \alpha<1$. We say that a given node x is α-balanced if x.left.size $\leq \alpha x$.size and x.right.size $\leq x$.size. The tree as a whole is α-balanced if every node in the tree is α-balanced.
G. Varghese first introduced the amortized approach for maintaining weightbalanced trees (Cormen, Leiserson, Rivest, and Stein, 2009, p. 473).

Q(a)

Given a node x in an arbitrary binary search tree, show how to rebuild the subtree rooted at x so that it becomes $1 / 2$-balanced. Your algorithm should run in time Θ (x.size), and it can use O (x.size) auxiliary storage.

Q(a)
Given a node x in an arbitrary binary search tree, show how to rebuild the subtree rooted at x so that it becomes $1 / 2$-balanced. Your algorithm should run in time Θ (x.size), and it can use O (x.size) auxiliary storage.

- Performing an inorder traversal on the subtree and store elements increasingly in array A
- Recursively reconstruct a BST from $A[a, b]$, initially $a=1, b=x$.size
- Select the median element of A as the root.
- Handle recursively $A[a \ldots m-1]$ and $A[m+1, \ldots, b]$

Q(b)
Show that performing a search in an n-node α-balanced binary search tree takes $O(\lg n)$ worst-case time.

Q (b)
Show that performing a search in an n-node α-balanced binary search tree takes $O(\lg n)$ worst-case time.

- Show the height of an n-node α-balanced binary search tree is at most $c \lg n$ for some positive constant c

$$
\begin{aligned}
h(x) & =1+\max \{h(x . l e f t), h(x . r i g h t)\} \\
& \leq 1+c \lg \alpha n \\
& =1+c \lg \alpha+c \lg n
\end{aligned}
$$

- When $1+c \lg \alpha \leq 0$, we have $h(x) \leq c \lg n$
- So, we choose $c \geq \frac{-1}{\lg \alpha}$

For the remainder of this problem

- Assume the constant $\alpha>1 / 2$.
- Suppose that we implement INSERT and DELETE as usual for an n-node binary search tree
- After every such operation, if any node in the tree is no longer α-balanced, then we "rebuild" the subtree rooted at the highest such node in the tree so that it becomes $1 / 2$-balanced.
- For a node x in a binary search tree T , we define

$$
\begin{gathered}
\Delta(x)=|x . l e f t . s i z e-y . l e f t . s i z e| \\
\Phi(T)=c \sum_{x \in T: \Delta(x) \geq 2} \Delta x
\end{gathered}
$$

where c is a sufficiently large constant that depends on α.

Q(c)
Argue that any binary search tree has nonnegative potential and that a $1 / 2$ - balanced tree has potential 0 .

Q(c)
Argue that any binary search tree has nonnegative potential and that a $1 / 2$ - balanced tree has potential 0 .

We show this by showing that $\Delta(x) \leq 1$ for every node x in T. Prove by contradiction.

- Assume $\exists x \in T$, s.t. $\Delta(x)=x$.left.size $-x$.right.size ≥ 2
- x.size $=$ x.left.size $+x$ right.size $+1 \leq$ x.left.size $+(x . l e f t . s i z e-2)+1$
- So,x.left.size $\geq(x . s i z e+1) / 2$, contradiction!

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$
- $|R|=|T|-|L|-1<(1-\alpha)|T|-1$

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$
- $|R|=|T|-|L|-1<(1-\alpha)|T|-1$
- So, $|L|-|R|>(2 \alpha-1)|T|+1$

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$
- $|R|=|T|-|L|-1<(1-\alpha)|T|-1$
- So, $|L|-|R|>(2 \alpha-1)|T|+1$
- $\Phi(T)=c \sum_{x \in T: \Delta(x) \geq 2} \Delta x \geq c(|L|-|R|)$

$$
\begin{aligned}
\Phi\left(T_{\text {rebuiled }}\right)-\Phi(T) & =0-\Phi(T) \\
& \leq-c(|L|-|R|) \\
& <-c((2 \alpha-1)|T|+1) \\
& <-c(2 \alpha-1)|T|
\end{aligned}
$$

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$
- $|R|=|T|-|L|-1<(1-\alpha)|T|-1$
- So, $|L|-|R|>(2 \alpha-1)|T|+1$
- $\Phi(T)=c \sum_{x \in T: \Delta(x) \geq 2} \Delta x \geq c(|L|-|R|)$

$$
\begin{aligned}
\Phi\left(T_{\text {rebuiled }}\right)-\Phi(T) & =0-\Phi(T) \\
& \leq-c(|L|-|R|) \\
& <-c((2 \alpha-1)|T|+1) \\
& <-c(2 \alpha-1)|T|
\end{aligned}
$$

- $\hat{c_{r b}}=c_{r b}+\Phi\left(T_{\text {rebuiled }}\right)-\Phi(T)<|T|-c(2 \alpha-1)|T| \leq 0$

Q(d)
Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α, in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?

- Let x be the highest unbalanced node, and T its subtree. Without loss of generality, $|L|>\alpha|T|$ and $|L| \geq|R|+2$
- $|R|=|T|-|L|-1<(1-\alpha)|T|-1$
- So, $|L|-|R|>(2 \alpha-1)|T|+1$
- $\Phi(T)=c \sum_{x \in T: \Delta(x) \geq 2} \Delta x \geq c(|L|-|R|)$

$$
\begin{aligned}
\Phi\left(T_{\text {rebuiled }}\right)-\Phi(T) & =0-\Phi(T) \\
& \leq-c(|L|-|R|) \\
& <-c((2 \alpha-1)|T|+1) \\
& <-c(2 \alpha-1)|T|
\end{aligned}
$$

- $\hat{c_{r b}}=c_{r b}+\Phi\left(T_{\text {rebuiled }}\right)-\Phi(T)<|T|-c(2 \alpha-1)|T| \leq 0$
- So, $c \geq 1 /(2 \alpha-1)$

Thank You!

