3-3 Amortized Analysis

Jun Ma

majun@nju.edu.cn

October 10, 2020

TC 17.1-3 I

Suppose we perform a sequence of n operations on a data structure in which the cost of the i-th operation is

$$c_i = \begin{cases} i & \text{if } i = 2^k \\ 1 & \text{otherwise} \end{cases}$$

Use **aggregate analysis** to determine the amortized cost per operation.

▶ Let $C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = |\log n| + 1$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

▶ Let $C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = |\log n| + 1$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

= $(1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$

▶ Let $C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = |\log n| + 1$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

= $(1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$
= $2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1)$

▶ Let $C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = |\log n| + 1$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

$$= (1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$$

$$= 2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1)$$

$$= O(n)$$

▶ Let $C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = \lfloor \log n \rfloor + 1$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

$$= (1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$$

$$= 2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1)$$

$$= O(n)$$

ightharpoonup So O(1) cost per each operation.

TC 17.2-2

Suppose we perform a sequence of n operations on a data structure in which the cost of the i-th operation is

$$c_i = \begin{cases} i & \text{if } i = 2^k \\ 1 & \text{otherwise} \end{cases}$$

Use **accounting method** to determine the amortized cost per operation.

Accounting method

$$c_i' = \begin{cases} 2 & \text{if } i = 2^k \\ 3 & \text{otherwise} \end{cases}$$

We still have to show $\forall n (\sum_{i \leq n} c_i \leq \sum_{i \leq n} c_i')$

Let
$$C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = \lfloor \log n \rfloor + 1$$

$$\begin{split} \sum_{1 \leq i \leq n} c_i &= \sum_{i \in C} c_i + \sum_{i \notin C} c_i \\ &= (1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1) \\ &= 2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1) \\ &\leq 3n - \lfloor \log n \rfloor - 1 \end{split}$$

$$\sum_{1 \leq i \leq n} c_i' = \sum_{i \in C} c_i' + \sum_{i \not\in C} c_i'$$

Accounting method

$$c_i' = \begin{cases} 2 & \text{if } i = 2^k \\ 3 & \text{otherwise} \end{cases}$$

We still have to show $\forall n (\sum_{i \leq n} c_i \leq \sum_{i \leq n} c_i')$

▶ Let
$$C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = |\log n| + 1$$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

$$= (1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$$

$$= 2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1)$$

$$\leq 3n - \lfloor \log n \rfloor - 1$$

$$\begin{array}{ll} \sum\limits_{1 \leq i \leq n} c_i' &= \sum\limits_{i \in C} c_i' + \sum\limits_{i \notin C} c_i' \\ &= 2(\lfloor \log n \rfloor + 1) + 3(n - \lfloor \log n \rfloor - 1) \end{array}$$

Accounting method

$$c_i' = \begin{cases} 2 & \text{if } i = 2^k \\ 3 & \text{otherwise} \end{cases}$$

We still have to show $\forall n (\sum_{i \leq n} c_i \leq \sum_{i \leq n} c_i')$

Let
$$C = \{i | i \le n, i = 2^k \text{ for some } k\}, |C| = \lfloor \log n \rfloor + 1$$

$$\sum_{1 \le i \le n} c_i = \sum_{i \in C} c_i + \sum_{i \notin C} c_i$$

$$= (1 + 2 + \dots + 2^{\lfloor \log n \rfloor}) + (n - \lfloor \log n \rfloor - 1)$$

$$= 2^{\lfloor \log n \rfloor + 1} + (n - \lfloor \log n \rfloor - 1)$$

$$\le 3n - \lfloor \log n \rfloor - 1$$

$$\sum_{1 \le i \le n} c'_i = \sum_{i \in C} c'_i + \sum_{i \notin C} c'_i$$
$$= 2(\lfloor \log n \rfloor + 1) + 3(n - \lfloor \log n \rfloor - 1)$$
$$= 3n - |\log n| - 1$$

TC 17.4-1

Suppose that we wish to implement a dynamic, open-address hash table.

- Why might we consider the table to be full when its load factor reaches some value α that is strictly less than 1?
- ▶ Describe briefly how to make insertion into a dynamic, open-address hash table run in such a way that the expected value of the amortized cost per insertion is O(1).

TC 17.4-1

Suppose that we wish to implement a dynamic, open-address hash table.

- Why might we consider the table to be full when its load factor reaches some value α that is strictly less than 1?
- ▶ Describe briefly how to make insertion into a dynamic, open-address hash table run in such a way that the expected value of the amortized cost per insertion is O(1).

Corollary 11.7

Inserting an element into an open-address hash table with load factor α requires at most $1/(1-\alpha)$ probes on average, assuming uniform hashing.

- **Expanding** when $\alpha \geq 0.75$.
- ▶ Contracting when $\alpha \leq 0.25$.

- **Expanding** when $\alpha \geq 0.75$.
- ► Contracting when $\alpha \leq 0.25$.
- ▶ Potential function:

$$\Phi_i = \begin{cases} \frac{8}{3} num_i - size_i & \text{if table is at least half full} \\ \frac{1}{2} size_i - num_i & \text{if table is less than half full} \end{cases}$$

- **Expanding** when $\alpha \geq 0.75$.
- ▶ Contracting when $\alpha \leq 0.25$.
- ▶ Potential function:

$$\Phi_i = \begin{cases} \frac{8}{3} num_i - size_i & \text{if table is at least half full} \\ \frac{1}{2} size_i - num_i & \text{if table is less than half full} \end{cases}$$

 \triangleright If the *i*-th insertion does not lead to expanding

$$num_i = num_{i-1} + 1$$
$$size_i = size_{i-1}$$

- **Expanding** when $\alpha \geq 0.75$.
- ▶ Contracting when $\alpha \leq 0.25$.
- ▶ Potential function:

$$\Phi_i = \begin{cases} \frac{8}{3} num_i - size_i & \text{if table is at least half full} \\ \frac{1}{2} size_i - num_i & \text{if table is less than half full} \end{cases}$$

 \blacktriangleright If the *i*-th insertion does not lead to expanding

$$num_i = num_{i-1} + 1$$
$$size_i = size_{i-1}$$

$$E(c'_i) = E(c_i + \Phi_i - \Phi_{i-1})$$

$$= \begin{cases} E(c_i) + 8/3 \le 4 + 8/3 & \text{if table is at least half full} \\ E(c_i) - 1 \le 4 - 1 = 3 & \text{if table is less than half full} \end{cases}$$

ightharpoonup If the *i*-th insertion leads to expanding

 \triangleright If the *i*-th insertion leads to expanding

$$\begin{aligned} num_i &= num_{i-1} + 1\\ size_i &= 2size_{i-1}\\ num_{i-1} &= 3/4size_{i-1} \end{aligned}$$

 \triangleright If the *i*-th insertion leads to expanding

$$num_i = num_{i-1} + 1$$

$$size_i = 2size_{i-1}$$

$$num_{i-1} = 3/4size_{i-1}$$

$$E(c'_i) = E(c_i + \Phi_i - \Phi_{i-1})$$

$$= E(c_i) + (1/2size_i - num_i) - (8/3num_{i-1} - size_{i-1})$$

$$= E(c_i) - num_i$$

$$\leq 4 + num_i - num_i = 4$$

TC Problem 17.3 (Amortized weight-balanced trees)

Consider an ordinary binary search tree augmented by adding to each node x the attribute x.size giving the number of keys stored in the subtree rooted at x. Let α be a constant in the range $1/2 \le \alpha < 1$. We say that a given node x is α -balanced if $x.left.size \le \alpha x.size$ and $x.right.size \le x.size$. The tree as a whole is α -balanced if every node in the tree is α -balanced.

G. Varghese first introduced the amortized approach for maintaining weightbalanced trees (Cormen, Leiserson, Rivest, and Stein, 2009, p. 473).

Q(a)

Given a node x in an arbitrary binary search tree, show how to rebuild the subtree rooted at x so that it becomes 1/2-balanced.

Your algorithm should run in time $\Theta(x.size)$, and it can use O(x.size) auxiliary storage.

Q(a)

Given a node x in an arbitrary binary search tree, show how to rebuild the subtree rooted at x so that it becomes 1/2-balanced.

Your algorithm should run in time $\Theta(x.size)$, and it can use O(x.size) auxiliary storage.

- Performing an inorder traversal on the subtree and store elements increasingly in array A
- Recursively reconstruct a BST from A[a, b], initially a = 1, b = x.size
 - \triangleright Select the **median** element of A as the root.
 - ▶ Handle recursively A[a...m-1] and A[m+1,...,b]

Q(b)

Show that performing a search in an n-node α -balanced binary search tree takes $O(\lg n)$ worst-case time.

Q(b)

Show that performing a search in an n-node α -balanced binary search tree takes $O(\lg n)$ worst-case time.

- Show the height of an n-node α -balanced binary search tree is at most $c \lg n$ for some positive constant c

$$h(x) = 1 + \max\{h(x.left), h(x.right)\}$$

$$\leq 1 + c \lg \alpha n$$

$$= 1 + c \lg \alpha + c \lg n$$

- ▶ When $1 + c \lg \alpha \le 0$, we have $h(x) \le c \lg n$
- ▶ So, we choose $c \ge \frac{-1}{\lg \alpha}$

For the remainder of this problem

- Assume the constant $\alpha > 1/2$.
- ▶ Suppose that we implement INSERT and DELETE as usual for an *n*-node binary search tree
- After every such operation, if any node in the tree is no longer α -balanced, then we "rebuild" the subtree rooted at the **highest** such node in the tree so that it becomes 1/2-balanced.
- \triangleright For a node x in a binary search tree T, we define

$$\Delta(x) = |x.left.size - y.left.size|$$

$$\Phi(T) = c \sum_{x \in T: \Delta(x) > 2} \Delta x$$

where c is a sufficiently large constant that depends on α .

Q(c)

Argue that any binary search tree has nonnegative potential and that a 1/2- balanced tree has potential 0.

Q(c)

Argue that any binary search tree has nonnegative potential and that a 1/2- balanced tree has potential 0.

We show this by showing that $\Delta(x) \leq 1$ for every node x in T. Prove by contradiction.

- Assume $\exists x \in T$, s.t. $\Delta(x) = x.left.size x.right.size \ge 2$
- $x.size = x.left.size + x.right.size + 1 \le x.left.size + (x.left.size 2) + 1$
- So, $x.left.size \ge (x.size + 1)/2$, contradiction!

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

- Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$
- $|R| = |T| |L| 1 < (1 \alpha)|T| 1$

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

- Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$
- $|R| = |T| |L| 1 < (1 \alpha)|T| 1$
- So, $|L| |R| > (2\alpha 1)|T| + 1$

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

- Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$
- $|R| = |T| |L| 1 < (1 \alpha)|T| 1$
- ► So, $|L| |R| > (2\alpha 1)|T| + 1$
- $\Phi(T) = c \sum_{x \in T: \Delta(x) > 2} \Delta x \ge c(|L| |R|)$

•

$$\Phi(T_{rebuiled}) - \Phi(T) = 0 - \Phi(T)$$

$$\leq -c(|L| - |R|)$$

$$< -c((2\alpha - 1)|T| + 1)$$

$$< -c(2\alpha - 1)|T|$$

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

- Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$
- $|R| = |T| |L| 1 < (1 \alpha)|T| 1$
- So, $|L| |R| > (2\alpha 1)|T| + 1$
- $\Phi(T) = c \sum_{x \in T: \Delta(x) > 2} \Delta x \ge c(|L| |R|)$

$$\Phi(T_{rebuiled}) - \Phi(T) = 0 - \Phi(T)$$

$$\leq -c(|L| - |R|)$$

$$< -c((2\alpha - 1)|T| + 1)$$

$$< -c(2\alpha - 1)|T|$$

 $c_{rb} = c_{rb} + \Phi(T_{rebuiled}) - \Phi(T) < |T| - c(2\alpha - 1)|T| \le 0$

Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α , in order for it to take O(1) amortized time to rebuild a subtree that is not α -balanced?

- Let x be the **highest unbalanced node**, and T its subtree. Without loss of generality, $|L| > \alpha |T|$ and $|L| \ge |R| + 2$
- $|R| = |T| |L| 1 < (1 \alpha)|T| 1$
- ► So, $|L| |R| > (2\alpha 1)|T| + 1$
- $\Phi(T) = c \sum_{x \in T: \Delta(x) > 2} \Delta x \ge c(|L| |R|)$

.

$$\Phi(T_{rebuiled}) - \Phi(T) = 0 - \Phi(T)$$

$$\leq -c(|L| - |R|)$$

$$< -c((2\alpha - 1)|T| + 1)$$

$$< -c(2\alpha - 1)|T|$$

- $c_{rb} = c_{rb} + \Phi(T_{rebuiled}) \Phi(T) < |T| c(2\alpha 1)|T| \le 0$
- ► So, $c > 1/(2\alpha 1)$

Thank You!