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We start with the fundamental definition of approximation algorithms. Infor-
mally and roughly, an approximation algorithm for an optimization problem

is an algorithm that provides a feasible solution whose quality does not differ
too much from the quality of an optimal solution.
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— relative error

_ |cost(A(z)) — Opty (r)[
calr) = Opty (z)

ea(n) =max{calz) z e Lin(X)"}.

approximation ratio

o [ D Oty )
Opty(z) * cost(A(z)) |

Ra(n) = max{Ra(z)|z € Lyn(X)"}.

Ra(z) =m

d-approximation algorithm

Ra(z) <4 for everyx € Ly.

f(n)-approximation algorithm
Ra(n) < f(n) for every n € N.
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Algorithm 4.2.1.3 (GMS (GREEDY MAKESPAN SCHEDULE)).

Input:
Step 1:

Step 2:

Step 3:

I=(py,....pn,m), n, m, Pr,...,Pp positive integers and m > 2.
Sort p1,...,Pn.
To simplify the notation we assume p; = p2 2 -+ > p, in the rest
of the algorithm.
for i =1 to m do
begin T;:= {i},
Time(T;) = p;
end
{In the initialization step the m largest jobs are distributed to the
m machines. At the end, T; should contain the indices of all jobs
assigned to the ith machine for i = 1,...,m.}
fori=m+1tondo
begin compute an [ such that
Time(Ty) := min{ Time(T;)|1 < j < m};

T =Ty U {i};
Time(Ty) := Time(T}) + p;
end

Output: (T),Ta,...,Tm).
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largest index in Ty. If k < m, then Tj| = 1 and so Optys(f) = p1 = pi

Optys(I) 2pr 2 p2 >« 2 po. (4.1)
Optyss(1) = 2212 (42)
m
k
P < Zi—-lp! (4 3)
k
(1) Let n < m.
Since Optps(I) = py (4.1) and cost({1},{2},...,{n}.0,...,0) = p), GMS lEMS)
has found an optimal solution and so the approximation ratio is 1. ~ :
(2) Let n > m. m l \ |
Let T be such that cost(Ti) = 3., .7, P = cost(GMS([)), and let k be the - l | -~

and GMS(/) is an optimal solution.

Now, assume m < k. Following Figure 4.2 we see that SR __,_J
Optl\ib‘ (l) _> COst(G.\'IS(I)) — Pk (4-4) CM!(CM‘S’”))‘P&

because of 3"+ p; > m - [cost(GMS(I)) — pi] and (4.2). Fig. 4.2.

k
cost(GMS(I)) — Optys(I) < pr < (Zlh‘) /k- (4.5)

(4.4) (4.3)

cost(GMS(1)) —~ Optus(T) (Zlezn) [k cm oy
Optys (1) (4.5) (3r . p)/m ~ k '

(4.2}
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Definition 4.2.1.6. Let U = (X, Y0, L, Ly, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (x,2) € Ly xIR", A computes
a feasible solution A(z) with a relative ervor at most &, and Time z(z,27")
can be bounded by a function® that is polynomial in |z|. If Timea(z,e"") can
be bounded by a function that is polynomial in both |z| and e ', then we say
that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

o PRI AL 77
— The advantage of PTASs is that the user has the choice of € in this

tradeoff of the quality of the output and the amount of computer
work.

— Probably a FPTAS is the best that one can have for a NP-hard
optimization problem.
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Definition 4.2.3.1. Let U = (¥}, Yo, L, Ly, M, cost, goal) and U =
(X1, X0,L, L, M, cost, goal) be two optimization problems with Ly C L. A
distance function for U according to L; is any function hy : L — R” 0
satisfying the properties

(i) hp(z) =0 for every z € Ly, and
{(ii) h is polynomial-time computable.

Let h be a distance function for U according to L;. We define, for anyr € RY,
Ball,p(Ly) = {we L|h(w) <r}.®

Let A be a consistent algorithm for U, and let A be an c-approzimation al-
gorithm for U for some ¢ € R”'. Let p be a positive real. We say that
A is p-stable according to h if, for every real 0 < r < p, there ex-
ists a 6, € R”! such that A is a 6, .-approximation algorithm for U, =
(21, Yo, L, Ball, h(L1), M, cost, goal).

A is stable according to h if A is p-stable according to h for every
p€ R". We say that A is unstable according to h if A is not p-stable for
anype R,

For every positive integer r, and every function f, : IN — IR”' we say that
A is (7, fr(n))-quasistable according to h if A is an f,(n)-approzimation
algorithm for U, = (X1, Xo, L, Ball, n (L), M, cost, goal).
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e({u, v})

dist(G, ¢) = max {O.mzxx {C({u.p}) repo]) ~1|u,v,p € V(G),
u#F v,u;ép,u;ép}},
disti (G, c) = max {O,ma.x {5? (%t{%tip)m) - 1|u,v € V(G) and
i=1 i i

u = Py, P2,...,Pm = v is a simple path between u and v

of length at most k (i.e., m+1< k)}}

distance(G, ¢) = max{distx(G,c)|2 <k < |V(G)| —1}.
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e({u,v}) < (1 +r)(c({u,p}) +c({p, v}))
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Note that applying the concept of stability to PTASs one
can get two different outcomes. Let us consider a PTAS A as a collection of
polynomial-time (1 + ¢)-approximation algorithms A, for every ¢ € R*. If
A, is stable according to a distance measure h for every £ > 0, then we can
obtain either

(i) a PTAS for U, = (£, Yo, L, Ball, y(L;), M, cost, goal) for every r € R*
(this happens, for instance, if 6, = 1 + & - f(r), where f is an arbitrary
function), or

(ii) a d, .-approximation algorithm for U, for every r € R™ but no PTAS for
U, for any r € R (this happens, for instance, if §, . = 1+ r + ¢€).



