IERARsR B E AR ERE
Kasaraju, Tarjan, Gabow
KaEsR
zzw@smail.nju.edu.cn

October 28, 2018

E AR 38 208 BLE R E R zzw@smail.nju.edu.cn



Definition

Strongly connected components:

a maximal set of vertices C € V such that for every pair of vertices
u and v in C, we have path from u to v and path from v to u.

Definition

Component Graph:
GSCC = (V9CC ESCC) . w; stands for a strongly connected
component ¢; in V. Edge (v;,v;) exists for there exists edge

between a vertex in ¢; and c;.

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Lemma (1)

Let C and C’ be distinct strongly connected components in
directed graph G = (V,E), let u,v € C, let u’, v’ € C’, and suppose
that G contains a path from u to u’ then G cannot also contain a
path from v’ to v.

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Lemma (2)

Let C and C’ be distinct strongly connected components in
directed graph G = (V,E). If there is an edge (u,v) € E and u € C,
v € C’ After running DFS on G, we get f(C) > F(C’).

zzw@smail.nju.edu.cn

E AR 38 208 B R E R



Proof.
Case 1: d(C)<d(C’) -> construct the path -> white-path theorem

-> Nesting of descendants’ intervals
Case 2: d(C)>d(C") -> all of C' is visited -> lemma 1 O

Above are only proof lines.

zzw@smail.nju.edu.cn

E AR 38 208 B R E R



Corollary (1)

Let C and C’ be distinct strongly connected components in
directed graph G = (V,E). Suppose that there is an edge (u,v)
€ ET, where ucC and ve C' then f(C)<f(C’).

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Algorithm 1 Kasaraju's algorithm

1: function STRONGLY-CONNECTED-COMPONENTS(G)

2: call DFS(G) to compute finishing times u.f for each vertex u

3 compute GT

4: call DFS(GT), but in the main loop of DFS, consider the
vertices in order of decreasing u.f

5: output the vertices of each tree in the depth-first forest
formed in line 2 as a separate strongly connected component.

E AR 38 208 BLE R E R zzw@smail.nju.edu.cn



Proof.

Induction to prove: the first kth tree formed by line 5 are all
strongly connected components.

k = 0, obvious.

Supposing it holds when k = n-1, when k = n, since all unvisited
nodes in strongly connected components C have u.f = f(C) > f(C")
for any visited components C’. By Corollary, u cannot reach any
other connected components. Thus we get the (k+1)th tree. [

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Problem (22.5-3)
Can we DFS(G) in ascending order in line 57 Why?

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Problem (22.5-3)
Can we DFS(G) in ascending order in line 57 Why?

Due to lemma 2, f(C) > f(C') (where f(U)=min{u.d}), but cases
are there exists vin C and u in C' that v.f < u.f

zzw@smail.nju.edu.cn

E AR 38 208 B R E R



Algorithm 2 Tarjan’s algorithm
1. function TARJAN(G)

2: for all vin 'V do
3: if not visited then
4: DFS’(v)

E AR 38 208 BLE R E R zzw@smail.nju.edu.cn



Algorithm 3 Tarjan’s algorithm
1: function DFS’(v)

2: Push(v)

3: for all edge(v,u) do

4: if not visited u then

5: DFS’(u)

6: low[v] = min(low|[v],low[u])

7: else

8: if u is in stack then

9: low[v] = min(low[v],v.d)

10: if v.d == low[v] then

11: Pop all nodes above v in stack to form a strongly con-

nected components

E AR 38 208 BLE R E R zzw@smail.nju.edu.cn



Lemma (1)

For all v, there exists w reachable from v such that w.d <= low|v]
<=vd

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Lemma (2)

When determining whether v is a root, we have for all w reachable
from v that low[v] <= w.d

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Proof.

we will prove by conduction that when we meet a node with low[u]
== u.d at the kth time, then u and the nodes above u form the
kth strongly connected components.

When k = 0 it is obvoius.

Suppose when k<n it is correct. When k=n:

Consider four kinds of nodes: 1. not visited 2. nodes below u in

stack 3. nodes above u in stack 4.nodes visited but not in stack.
O

E AR 38 208 B R E R zzw@smail.nju.edu.cn



Proof.

Case 1: since the DFS process do not visit v, it cannot be reached
from u.

Case 2: Since u.d == low[u], by lemma 2, u cannot reach any

node below it.

Case 3: Since it is above u, it can be visited by u. Suppose u is the
vertex with smallest u.d cannot be visited by v, by lemma 1, there
exists the w reachable from v such that w.d <= low[v] <= v.d. If
w.d < u.d, since u can reach v, then u can visit w but w.d < u.d =
low[u], which contracts lemma 2. Otherwise, w is above u and
since w can reach u, v can reach u.

Case 4: By induction, they belong to other strongly connected
components. ]

E AR 38 208 B R E R zzw@smail.nju.edu.cn



For Gabow's algorithm, it is similar to Tarjan’s algorithm instead
that it uses one extra stack to substitude u.d and low[u]'s work.

You can prove it by comparing with Tarjan.
For more information about Gabow's algorithm, visit Wiki Gabow

zzw@smail.nju.edu.cn

E AR 38 208 BLE R E R


https://en.wikipedia.org/wiki/Path-based_strong_component_algorithm

E AR 38 208 BLE R E R zzw@smail.nju.edu.cn



