## 证明强连通算法的正确性

Kasaraju, Tarjan, Gabow

## 郑奘巍

zzw@smail.nju.edu.cn

October 28, 2018

#### Definition

#### Strongly connected components:

a maximal set of vertices  $C \in V$  such that for every pair of vertices u and v in C, we have path from u to v and path from v to u.

#### Definition

#### Component Graph:

 $G^{SCC}=(V^{SCC},E^{SCC}).$   $v_i$  stands for a strongly connected component  $c_i$  in V. Edge  $(v_i,v_j)$  exists for there exists edge between a vertex in  $c_i$  and  $c_j$ .

## Lemma (1)

Let C and C' be distinct strongly connected components in directed graph G = (V,E), let  $u,v \in C$ , let  $u',v' \in C'$ , and suppose that G contains a path from u to u' then G cannot also contain a path from v' to v.

## Lemma (2)

Let C and C' be distinct strongly connected components in directed graph G = (V,E). If there is an edge  $(u,v) \in E$  and  $u \in C$ ,  $v \in C'$ . After running DFS on G, we get f(C) > F(C').

Case 1: d(C) < d(C') -> construct the path -> white-path theorem -> Nesting of descendants' intervals

Case 2: d(C)>d(C') -> all of C' is visited -> lemma 1

Above are only proof lines.



## Corollary (1)

Let C and C' be distinct strongly connected components in directed graph G = (V,E). Suppose that there is an edge  $(u,v) \in E^T$ , where  $u \in C$  and  $v \in C'$  then f(C) < f(C').

## **Algorithm 1** Kasaraju's algorithm

- 1: **function** STRONGLY-CONNECTED-COMPONENTS(G)
- 2: call DFS(G) to compute finishing times u.f for each vertex u
- 3: compute  $G^T$
- 4: call DFS( $G^T$ ), but in the main loop of DFS, consider the vertices in order of decreasing u.f
- 5: output the vertices of each tree in the depth-first forest formed in line 2 as a separate strongly connected component.

Induction to prove: the first kth tree formed by line 5 are all strongly connected components.

k=0, obvious.

Supposing it holds when k = n-1, when k = n, since all unvisited nodes in strongly connected components C have u.f = f(C) > f(C') for any visited components C'. By Corollary, u cannot reach any other connected components. Thus we get the (k+1)th tree.

Problem (22.5-3)

Can we DFS(G) in ascending order in line 5? Why?

### Problem (22.5-3)

Can we DFS(G) in ascending order in line 5? Why?

Due to lemma 2, f(C) > f(C') (where  $f(U)=min\{u.d\}$ ), but cases are there exists v in C and u in C' that v.f < u.f

### Algorithm 2 Tarjan's algorithm

- 1: function TARJAN(G)
- 2: **for** all v in V **do**
- 3: **if** not visited **then**
- 4: DFS'(v)

### Algorithm 3 Tarjan's algorithm

```
1: function DFS'(v)
       Push(v)
 2:
       for all edge(v,u) do
 3:
           if not visited u then
 4:
 5:
              DFS'(u)
              low[v] = min(low[v], low[u])
6:
           else
7:
              if u is in stack then
8:
                  low[v] = min(low[v], v.d)
9:
       if v.d == low[v] then
10:
           Pop all nodes above v in stack to form a strongly con-
11:
    nected components
```

## Lemma (1)

For all v, there exists w reachable from v such that w.d  $\leq low[v]$   $\leq v.d$ 

## Lemma (2)

When determining whether v is a root, we have for all w reachable from v that  $low[v] \le w.d$ 

we will prove by conduction that when we meet a node with low[u] == u.d at the kth time, then u and the nodes above u form the kth strongly connected components.

When k = 0 it is obvoius.

Suppose when k < n it is correct. When k = n:

Consider four kinds of nodes: 1. not visited 2. nodes below u in stack 3. nodes above u in stack 4.nodes visited but not in stack.

(□ ▶ 4回 ▶ 4回 ▶ 4回 ▶ ● 釣Q@

Case 1: since the DFS process do not visit v, it cannot be reached from u.

Case 2: Since u.d == low[u], by lemma 2, u cannot reach any node below it.

Case 3: Since it is above u, it can be visited by u. Suppose u is the vertex with smallest u.d cannot be visited by v, by lemma 1, there exists the w reachable from v such that w.d  $\leq |\log[v]| \leq v.d$ . If w.d  $\leq u.d$ , since u can reach v, then u can visit w but w.d  $\leq u.d = \log[u]$ , which contracts lemma 2. Otherwise, w is above u and since w can reach u, v can reach u.

Case 4: By induction, they belong to other strongly connected components.

证明强连通算法的正确性 zzw@smail.nju.edu.cn

For Gabow's algorithm, it is similar to Tarjan's algorithm instead that it uses one extra stack to substitude u.d and low[u]'s work. You can prove it by comparing with Tarjan.

For more information about Gabow's algorithm, visit Wiki Gabow

# Thank You!