1) e K S

PR AP RS

P 5

2.7

*lﬁffr

el -

/we
¥

6
Hl

7] il 1

PR
[14A]
gt
8=
=
iJF
18
o
il
?

T
HETEHE

]
%

] EERL g A E X

%Wﬁwn R “;%TPE”
-i- a H-IEXF” E\Z R E. .
ﬁrﬁ*ﬂm A TR EI’J THE

15875 BLR [

CLEAE I, SR B A4 0 B
e Why?

HSEHURE SRR i, RUUEC, Cred, ATL
RLF O U

* For example?

o FEFPISAT HIE, W R B LE Py R 2
o fE CRIRET 2R, REHEREEHS

] /g 2

T+ 3L A 4= 15 M = 22 # bitsF TR 5
FRITRIFIESR?

Before the middle of the 1940s,
computer operators “hardwired”
their programs

Mma, e

R, hardwired programf Z &4, set switches
ANGEH S G h !

PR LE T EANLRI AT R : programmable?
A big problem!

Big idea:
1, ENR MR A P hardwired “ J7 T #:/E”
2, 5wty 7 =0, SCERER RHE R T
£” , w5 “FEF”
30 “FEF” A7 HUAEATfifg =5 R]
AT EML “fEie” PP, $AT I FERAE

0010001000000100
0010010000000100
0001011001000010
0011011000000011
1111000000100101
0000000000000101
0000000000000110
0000000000000000

(IROE

I IH H -------
O/EOFIEJ?CJH% ‘ T ﬁ OOlOOlOOOOOOOlOO
. ; = AT
0001011001000010
. A AN, N7
g IR 0011011000000011
« 000000100: MR IZE, 4 i1 0oroblnhica
o BN ERAERL MW —2RIR S T
Hbdik 1) RS 4 1667, HUAES 0000000000000101
0000000000000110

PATRE:: BSMESR 155 F s 0000000000000000

7] 72 3

fr T 64
RER| “YmfEd” [7157?

fr T 7 “H =
HEE T T

=L
5185

* The early programmers realized that it would be a tremendous help
to use mnemonic symbols for the instruction codes and memory

locations, so they developed assembly language for this purpose.

.ORIG x3000 ; Address (in hexadecimal) of the first instruction
LD Rl, FEIRST ; Copy the number in memory location FIRST to register R1
LD R2, SECOND ; Copy the number in memory location SECOND to register R2
ADD R3, R2, R1 ; Add the numbers in R1 and R2 and place the sum in
; register R3
ST R3, SUM ; Copy the number in R3 to memory location SUM
HALT ; Halt the program
FIRST .FILL #5 ; Location FIRST contains decimal 5
SECOND .FILL #6 ; Location SECOND contains decimal 6
SUM .BLKW #1 ; Location SUM (contains 0 by default)

.END ; End of program

PP B iE S

* Programming language abstractions fall into two general categories:
data abstraction and control abstraction.

* Data abstractions simplify for human users the behavior and attributes of
data, such as numbers, character strings, and search trees.

e Control abstractions simplify properties of the transfer of control, that is, the
modification of the execution path of a program based on the situation at
hand. Examples of control abstractions are loops, conditional statements, and
procedure calls.

ink Tarst = 53
int second = 6;
int sum = first + second;

Data: Basic Abstractions

* Basic data abstractions in programming languages hide the internal
representation of common data values in a computer

* Another basic data abstraction is the use of symbolic names to hide
locations in computer memory that contain data values

* int x;

Data: Structured Abstractions

* The data structure is the principal method for collecting related data
values into a single unit.
* Array: int a[10];
* Record:

Data: Unit Abstractions

* In a large program, it is useful and even necessary to group related
data and operations on these data together. Typically, such
abstractions include access conventions and restrictions that support
information hiding.

* The unit abstraction is often associated with the concept of an abstract data
type, broadly defined as a set of data values and the operations on those
values.

e Classes in C++ and Java

Control: Basic Abstractions

* Typical basic control abstractions are those statements in a language
that combine a few machine instructions into an abstract statement
that is easier to understand than the machine instructions.

* SUM = FIRST + SECOND

Control: Structured Abstractions

e Structured control abstractions divide a program into groups of

int
for

instructions that are nested within tests that govern their execution.
They, thus, help the programmer to express the logic of the primary
control structures of sequencing, selection, and iteration (loops)

Iterator<String> iter = exampleList.iterator()
while (iter.hasNext())

sum = 0; System.out.println(iter.next ()) ;

(int 1 = 0; 1 < 10; i++){

int data = list[i];

if (data < 0)

data = -data;
sum += data;

Control: Structured Abstractions

* Procedure:

* This allows a programmer to consider a sequence of actions as a single action
that can be called or invoked from many other points in a program

function gcd(u, v: in integer) return integer is
begin
if v = 0
return u;
else
return gcd(v, u mod vVv) ;
end if;
end gcd;

Control: Unit Abstractions
c control canalsobe S m——————————————

abstracted to - —
include a collection - ez I g o ?
of procedures that -
provide logically @ § v
related services to s—e - -
other parts of a 1 % ==l L]
program and that =X e j e g G
form a unit, or v R =1/ B e
stand-alone, part (\ e — il
of the program - & |

For example

int n=0;

grade = compute_grade[n];

while((grade<90)&&(n<number_of students)){
n++;

’

grade=compute_grade[n];
}
if (grade>=90)

cout <<“There is a student who got a score of “<<grade <<endl;
else cout <<“No student has a high score”

Prolog: — M AN[E] IR Bz TH AU

Predicates JEETE B, B B VS R A A S HOHAT U RE */
likes(symbol, symbol)
friend(symbol, symbol)

clauses [*FRJBL, AFTBURT A 1S SRR U */
likes(bell,sports). [*RTAAT FEEE S/

likes(mary,music).

likes(mary,sports).

likes(jane,smith).

friend(john,X):-likes(X,sports),likes(X,music). [*AAT 2 R */
friend(john,X)
BATEE RN X=mary (marys&johnBI &)

A @5 .

AT A A AN FE BT KU ?

l'ﬂﬂ@G:

QR {50 21 2w

€¢] IJ:XX” ?

5| RO <R

)

f»I for-statement
» ﬁ ‘f“ » ﬂ \\ i » ﬁ » statement :
—I’IZI —Ifi B/\J —[’D /L ﬂzl:l —I’IZI X Ll assignment-stmt

T V25 %JI_L[XJE' T 4+/Zx 1; %f‘ El/‘J/EU T ey @ [or-header statement
e eiaEl, HEmiE A
FEIAE Y 2 a5 !

{5 a1 T e Cirom)) (oo >-[vatee]

int sum=0;

int salary[100];
for index from 0 to 99 by 1 do
sum = sum+salary[index];

en d value H
(IUE

int sum=0;
int salary[100];
forindex=0to 99 by 1 do

:
- H . variable
sum = sum+salary[index];
o

o= B ERTE X

o 1B FIRKETE BRI E —MEF IHER R X

° WJ
#include "stdio.h"
main(){
int x,y;
X=3;
V=X+(++X)+(++x);
printf("%d,%d",x,y);
}

5, 4
o EVEVE T AIFL R B2 1] SR A 7 A T SR
o IR, BRI TT B g LR P A]

« AR HB, FATATLUCRNANE “Ho)” A “Kkg” HIREFR
Bt s E AT AR

« FEITIE S T AL BT M “FEH” S ‘YR LIt i3
MLE 7, fEgmFE N a8 A
o FrigHIENLE], B CLEARERME N 1ES Wi

s P 1E S A BIEW K BIITERAE S id

