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Returning to the previous example of £Q, if certainty is not required, Alice and Bob can check for equality using only Oflog
n) messages. Consider the following protocol: Assume that Alice and Bob both have access to the same random string

z € {0, 1}". Alice computes z - 2 and sends this bit (callit b) to Bob. (The (-)is the dot product in GF(2).) Then Bob
compares bto 2 - Y. If they are the same, then Bob accepts, saying xequals y. Otherwise, he rejects.

Clearly, if X = Y, thenZ - T = Z - Y,so Prob. [Accept] = 1.If xdoes not equal y, it is still possible that 2 - & = z - Y,
which would give Bob the wrong answer. How does this happen?

If xand yare not equal, they must differ in some locations:

x =clcg...p...p'...a:n

Yy=cC1Cp...q...q ... Yn

Z = 2122---2‘&'---23'---211
Where x and Y agree, 2; * T'; = 2; * ¢; = Z; ¥ UY; so those terms affect the dot products equally. We can safely ignore
those terms and look only at where o and Y differ. Furthermore, we can swap the bits T; and Y; without changing whether
or not the dot products are egual. This means we can swap bits so that o contains only zeros and Y contains only ones:

2=00...0

y =11...1

2 =z12y... 2
Note that ,/ . ;/ — gand 2’ . y’ =3 z;- Now, the question becomes: for some random string /. what is the probability
that 3, z_f — ()? Since each z; is equally likely to be () or 1, this probability is just 1 /2. Thus, when x does not equal ¥,
Prob. [.-ktcept] =1 / 2. The algorithm can be repeated many times to increase its accuracy. This fits the requirements for

a randomized communication algorithm.
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Algorithm 5.3.4.4. NEQ-PoL

Input: Two polynomials p;(z1,...,Zn) and pa(z1,...,Tm) over Z, with
at most degree d, where n is a prime and n > 2dm.

Step 1: Choose uniformly a1, as,...,a, € Z, at random.

Step 2: Evaluate I := pi(ay,az,..., m) —D2(a1,a2, ..., 0m)-

Step 3: if I # 0 then output(p, # p2) {accept}
else output(p; = p2) {reject}.
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Theorem 5.3.4.5. Algorithm NEQ-POL is a polynomial time one-sided-error
Monte Carlo algorithm that decides the nonequivalence of two polynomials.

Proof. Since the only computation part of NEQ-POL is the evaluation of a
polynomial in Step 2, it is obvious that NEQ-POL is a polynomial-time algo-
rithm.

If p1 = p2, then py(ay,...,am) = p2(a1,...,an) for all ay,az,...,an from
Z, and so I = 0. So,

Prob(NEQ-PoOL rejects (p1,p2)) = 1.

If p1 # po, then pi(x1,...,2m) — p2(z1,...,%m) is a nonzero polynomial.
Following Lemma 5.3.4.2 and the fact n > 2dm,

S

Pmb(pl(al,ag,...,am)—pg(al,ag,...,am)=0) < m-d/n <

Lemma 5.3.4.2

Thus,

Prob(NEQ-POL accepts (py,p2)) =
d
Prob(pi(ay,...,am) —p2(ar,...,am) #0) > 1 - m:

— 2
n

[
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Algorithm 5.3.4.9. NEQ-1BP

S\

[
A

AT~

Input: Two 1BPs A and B over the set of variables {x,, z2,...,Zm}, m €
IN.

Step 1: Construct the polynomials p4 and ppg.

Step 2: Apply the algorithm NEQ-POL on pa(z1,..., ZTm) and pp(zy,...,
Ty ) over some Z,, where n is a prime that is larger than 2m.

Output: The output of NEQ-POL.
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Lemma 5.3.4.8. For every two 1BPs A and B,
A and B are equivalent if and only if pa and pp are identical.

Proof. To see this we transform every polynomial of degree at most 1 into
a special “normal” form similar to DNF for the representation of Boolean
functions.’® This normal form is the sum of “elementary multiplications”
Y1Y2 - - - Ym, Where either y; = z; or y; = (1 — z;) for every i = 1,2,...,m.
Obviously, two polynomials of degree 1 are equivalent if and only if they have
their normal forms identical. Moreover, every elementary multiplication of this
normal form corresponds to one input assignment on which the corresponding
1BP computes “1”. So, A and B are equivalent if and only if the normal forms
of p4 and pp are identical.

It remains to show that one can unambiguously assign the normal form to
every polynomial® p, of degree 1. First, one applies the distributive rules to
get a sum of elementary multiplications. If an elementary multiplication y does
not contain a variable z, then we exchange y by two elementary multiplications
z-yand (1 —z) - y. Obviously, an iterative application of this rule results in
the normal form. O

Theorem 5.3.4.10. NEQ-1BP is a polynomial-time one-sided-error Monte
Carlo algorithm for the problem of noneguivalence of two 1BPs.

Proof. The construction of p4 and pp in Step 1 can be done in a time that is
quadratic in the input size (representation of 1BPs). Since NEQ-PoL works in
polynomial time and the sizes of p4 and pp (as inputs of NEQ-POL) are poly-
nomial in the size of the input of NEQ-1BP, Step 2 is also done in polynomial
time.

Due to Lemma 5.3.4.8 we know that A and B are equivalent if and only
if pa and pp are equivalent. If A and B are equivalent (i.e., when p4 and pp
are equivalent), then NEQ-POL rejects (p4, pp) with a probability of 1, i.e.,
we have no error on this side. If A and B are not equivalent, then NEQ-POL
accepts (pa,pp) with the probability of at least

1-m/n.

Since n > 2m, this probability is at least 1/2. O
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