

(-

I8JgR0: dynamic programmingHIEANLS

o fH e A a] PL{# F dynamic programming KR i ?

BT AR AR

o {R¥EfFdynamic programming) /4>

A

A AT

AR

IR g7

1. Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

2.
3. Compute the value of an optimal solution.
4,

Construct an optimal solution from computed information.

o | X | ¥ %Edynamic programmingiz 17 B[] 1Y) EE 2 A& M

PR

e top-down with memorizationfllbottom-up method™-> 5

'I%?

IB)&R1: Keys with Different Frequencies

Since the keys with
A binary search tree perfectly balanced |largest frequencies have
ring largest depth, this tree 1s
/ (0-075)\ not optimal.
has thing 2
(0.025\Average: 3.25 (0.075\ A(T) =D p;c;
i=1
cabbage of ta walrus
(0.025) (0.125) (0.050) (0.025)

/NSNS N

and come king pig said the time wing
(0.150) (0.050) (0.050) (0.025) (0.075) (0.150) (0.050) (0.050)

-

Improved for a Better Average

the
of \tlme
/ (0.125)\ / (0.050)\
and said thing walrus
(0.150) \ ;).07&) (0.075) (0.025)
come ring talk >1ng
/(0.050) \ (0.075) (0.050) (0.050)
n
cabbage king pig — i
(0.025) (0.050) (0.025) A(T) ZP €= 2.915
has/ =

(0.025)

B PEFIZESRERY)R

o i 5E I HIAE S5
SRIRAR: A x A x.. . xA_ XA
A YRR, — AR T, NG AT

o Nt A= EONIA
o FEPRIA N R A a L ERATT T BT TR

E iz H

A)
»
o

o 1T AN TR B T S P AR i 22 AR K

o DAL IR RR: AT AT

FHIR

P EARYT B N?

Plan of Optimal Binary Tree

The problem 1s decomposes
by the choices of the root.

For each selected root K, Minimizing over all choices

the left and right subtrees
are optimized.

The subproblems can be
identified similarly as for
matrix multOrder

Subproblems as left and right subtrees

-

Problem Rephrased

e Subproblem 1dentification
e The keys are 1n sorted order.
e Each subproblem can be 1dentified as a pair of
index (low, high)
* Expected solution of the subproblem

e For each key K, a weight p. 1s associated.
Note: p, is the probability that the key is searched for.

e The subproblem (low, high) 1s to find the binary
search tree with minimum weighted retrieval cost.

Minimum Weighted Retrieval Cost

e A(low, high, r) 1s the minimum weighted retrieval
cost for subproblem (low, high) when K 1s chosen
as the root of its binary search tree.

e A(low, high) is the minimum weighted retrieval
cost for subproblem (low, high) over all choices of
the root key.

* p(low, high), equal to p, T Pigw+1T- - - FPhign» 18 the
weight of the subproblem (low, high).

Note: p(low, high) is the probability that the key searched for is in this interval .

Integrating Solutions of Subproblem

* Weighted retrieval cost of a subtree

e Let 7'1s a particular tree containing K, ..., Ky, the
weighted retrieval cost of 7'1s W, with 7' being a whole
tree. Then, as a subtree with the root at level 1, the
weighted retrieval cost of 7" will be: W+p(low, high)

e So, the recursive relations:
e A(low, high, r)
= p p(low, r-1)+A(low, r-1)+p(r+1, high)+A(r+1, high)
= p(low, high)+A(low, r-1)+A(r+1, high)
e A(low, high) = min{A4(low, high, r) | low<r<high}

Avoiding Repeated Work by Storing

e Array cost: cost[low][high] gives the
minimum weighted search cost of
subproblem (low,high).

e Array root: root[low]|[high] gives the best
choice of root for subproblem (low,high)

* The cost[low][high] depends upon
subproblems with higher first index(row
number) and lower second index(column
number)

Computation of the Array cost

high

cost[low][high]
1| 0 | py //
2 0| P d low
0
0 Pn
n+1 0

bestChoice(prob, cost, root, low, high)

Optimal BST: DP Algorithm

it (high<lov_v) | optimalBST(prob,n,cost,root)
bestCost—_O, | for (low=n+1; low>1; low--)
bestRoot=-1; for (high=low-1; high<n; high++)

else - bestChoice(prob,cost,root,low,high)
bestCost=w0; return cost

for (r=low; r<high; r++)
rCost=p(low,high)+cost[low][r-1]+cost[r+1][high];
if (rCost<bestCost)
bestCost=rCost;
bestRoot=r;
cost[low][high]=bestCost; in an?’)
root[low][high]=bestRoot;
return

|BJ@R2: Separating Sequence of Words

e Word-length w,, w,, ..., w, and line-width: W

* Basic constraint: if w;, w4, ..., w; are in one line,
then witw, + ... +w<W

e Penalty for one line: some function of X. X 1s:
e O for the last line 1n a paragraph, and
° W—(witw,t+ ... +w) for other lines

e The problem

e how to separate a sequence of words(forming a
paragraph) into lines, making the penalty of the
paragraph, which 1s the sum of the penalties of individual
lines, minimized.

Solution by Greedy Strategy

i word w Solution by greedy strategy
1 Those 6 words (1,2,3) (4,5) (6,7) (8,9) (10,11)
2 who 2 X 0 4 8 4 0
3 cannot 7
4 remember 9 penalty 0 64 512 64 0
5 th 4 :
% paes t : Total penalty is 640
7 are 4 . .
8 condemmed 10 An improved solution
9 to 3
10 repeat 7 words (1,2) (3.4) (5,6,7) (8,9) (10,11)
11 it 4 X 7 1 4 4 0
| | penalty 343 1 64 64 0
Wis 17, and penalty is X° Total penalty is 472

- /

Problem Decomposition

e Representation of subproblem: a pair of indexes (i),
breaking words i through j into lines with minimum penalty.
e Two kinds of subproblem
e (k, n): the penalty of the last line 1s 0
e all other subproblems

e For some £, the combination of the optimal solution for (1,k)
and (k+1,n) gives an optimal solution for (1,n).

e Subproblem graph
e About n? vertices

e Each vertex (i,j) has an edge to about j —i other vertices,
so, the number of edges is in O(#n?)

Simpler Id

entification of subproblem

e [f a subprol

vlem concludes the paragraph,

then (k,n) can be simplified as (k). There are
about k subproblems like this.

e Can we eliminate the use of (i,j) with j<n?

e Put the first £ words 1n the first line(with the
basic constraint satisfied), the subproblem to be
solved 1s (k+1,n)

e Optimizing the solution over all £’s. (k 1s at most

W/2)

™

Breaking Sequence into lines

lineBreak(w,W,i,n,L) In DP version
if (w+w,_ +...+w < this 1s replaced
<Put all words on line L, set penalty to 0> by “Recursion
else or Retrieve”
for (k=1; w+...+w.,, ,<W; k++)
X=W-(Wit .. Wi);
kPenalty=lineCost(X)+lineBreak(w, W, i+k, n, L+1)

In DP

S . <Set penalty always to the minimum kPenalty>
«“Gt Ol‘in, o” <Updating k_. , which records the k that produced
inserted the minimum penalty>

<Put words i through i+k_. -1 on line L>
return penalty

Analysis of lineBreak

e Since each subproblem is identified by only one
integer k, for (k,n), the number of vertex in the
subproblem 1s at most #.

e So, in DP version, the recursion is executed at
most 7 times.

e The loop 1s executed at most /2 times.

e So, the running time 1s 1n @(Wn). In fact, IV, the
line width, is usually a constant. So, ®(n).

e The extra space for the dictionary 1s 1n ®(n).

BJ#R2: dynamic programmingHJSL4Fl

o PREEVIH K fftrod cutting) P20 B8 2

Characterize the structure of an optimal solution.

7

Recursively define the value of an optimal solution.
Compute the value of an optimal solution.

N

Construct an optimal solution from computed information.

9 1 b 5 5 8 1

00 1))0) Q))0
() (b) © @

OOCD OO MO0 DOOO
(e) (f) (g) (h)

Itngthr'll 23 4 3 6 7 b 9 10
pri-:_'cpf-ll 5 8 9 10 17 17 20 24 30

e

IE)&R3: Longest Common Subsequence

o YREELHH K ffflongest common subsequence) 4N 25 B, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S, = GTCGTTCGGAATGCCGTTGCTCTGTAAA

@ GTCGTCGGAAGCCGGCCGAA
.

e

IE)&R3: Longest Common Subsequence

o YREELHH K ffflongest common subsequence) 4N 25 B, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

jooo1 2 3 4 5 &
B C A B A

) S A

0 ifi =0orj=0, I HEENED

.. . . 2 @ ool | el
cli.jl=1cli—1j—-1]+1 ifi,j > Oand x; = y; . el SIS
7 e L SRR

| max(c[i, j — 1],c[i—1,j]) ifi,j > 0and x; # y; . a i“‘o i ;T ;

o o~ s

i} | 20 21 3l 3| 4

o 1 T T T

120 2 4] 4

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S, = GTCGTTCGGAATGCCGTTGCTCTGTAAA

@ GTCGTCGGAAGCCGGCCGAA
.

e

|B)@4 : Longest palindrome subsequence

o {REE VL BH >R fiflongest palindrome subsequence) U~ 20 1%
[, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

A palindrome 1s a nonempty string over some alphabet that reads the same for-
ward and backward. Examples of palindromes are all strings of length 1, civic,
racecar, and aibohphobia (fear of palindromes).
Give an efficient algorithm to find the longest palindrome that is a subsequence
a of a given input string. For example, given the input character, your algorithm
A,

should return carac.

e

IB)@4 : Longest palindrome subsequence

o {REE VL BH >R fiflongest palindrome subsequence) U~ 20 1%
[, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

longest(i,j)= j-i+1l if j-i<=8,
2+longest(i+l, j-1) if x[i]==x[7]
max(longest{i+l,j),longest(i,j-1)) ctherwise

A palindrome 1s a nonempty string over some alphabet that reads the same for-
ward and backward. Examples of palindromes are all strings of length 1, civic,
racecar, and aibohphobia (fear of palindromes).
Give an efficient algorithm to find the longest palindrome that is a subsequence
@ of a given input string. For example, given the input character, your algorithm
A,

should return carac.

4 N

IB]ER5: Edit distance

o PREEVLHH K fifedit distance) DU AN 20 TR AL, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

Imzextion of a =ingle z=vmbol. If & = 0V, then inszerting the zvmbol X producesz 1V, Thisz can al=o be
denoted ©—X, uszing & to denote the empty string.

Deletion of a =zingle avmbol changes XV to 1V (X—E).

Subztitution of a =ingle zvmbol X for a zymbol }'%E X changes XV to 1)V Dﬁ*ﬂﬁ.

The Lewvenshtein distance between “kitten” and “sitting” is 3. The minimal edit script that transforms the

former into the latter 1s:

-3

k™)

2. =itten —* =ittin (zubstitution of “1i" for “e”)

1. kitten — =itten [(=zubstitution of “z2" for

3. =ittin —* zitting (insertion of “g” at the end).

e

IB]&75: Edit distance

o PREEVLHH K fifedit distance) DU AN 20 TR AL, 2
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

Elrxg_ljj_l for l; = bt'
d;; = | di—1j + Wae (b;) forl<i<m.l1<j<n
min § d; j_1 + Wins(@;) for a; # b, '

di—1j-1 + wsub(ﬂ-j,ba')

Imsexrtion of a zingle zvmbol. If @ = UV, then inzerting the zvmbol X producez HYV. This can al=sao be
denoted ©—¥, uzing & to denote the empty string.

Deletion of a zingle symbol changez UXV to 1V [x— &1,

Substitution of a szingle symbol X for a symbol V # ¥ changes HXV to MV |:_'i'—'*l'|.':|.

The Levenshtein diztance between "kitten” and “zitting” iz 5. The minimal edit script that transforms the

former into the latter i1=:

1. kitten — sitten (substitution of 27 for “k7)

@ 2. =itten — sittin (substitution of “i7 for “e”)
k 5. =zittin —* =itting (inzertion of “g° at the end).

IB)R06: Subset Sum

* Given a set A={s,,S,,..., S, }, where s. (for
i=1,2,..., n) 1s a natural number, and a
natural number S, determine whether there 1s
a subset of 4 totaling exactly S. Design a
dynamic programming algorithm for solving
the problem.

Decomposition the Problem

e Suppose subset 4. € 4 1s a solution of the
problem and s; & 4;, then we have

YA~ {s}) =55
e Thus, the problem can be divided into

several stages, 1n each of which one element
1s found.

e States: all the possible values of subset sum
in each stages.

Basic Idea

e Using a two-dimension boolean table 7, 1n
which 17i, j]=true if and only 1f there 1s a
subset of the first i items of A4 totaling
exactly j.

e Initialization
e For each elements 1in 7[n+1][S], set as false

e Main loop to calculate each value

Main loop

for0=0;1<=n+I1;1++)
if (A[1] == S) return true;
else if (A[1] <S) T[1, A[1]] = true;
for=0;j<=S+1Lj+%)
if (T[1 -1, 5])
d
T[1, j] = true;
if ((T[1, 3] + A[1]) == S) return true;
else if ((t = (T[1, j] + A[1])) <S) T[4, t] = true;

}
Time 0(aS) Space Oas)

return false;

e

B)@7: dynamic programmingHYSE

o unweighted longest simple path JA+ 4 A EHBG w4514 ?
o unweighted shortest simple path Y4 ANAEAEIX A 7] 781 ?

	计算机问题求解 – 论题2-12
	问题0：dynamic programming的基本概念
	问题1：Keys with Different Frequencies
	Improved for a Better Average
	矩阵连乘的问题
	Plan of Optimal Binary Tree
	Problem Rephrased
	Minimum Weighted Retrieval Cost
	Integrating Solutions of Subproblem
	Avoiding Repeated Work by Storing
	Computation of the Array cost
	Optimal BST: DP Algorithm
	问题2：Separating Sequence of Words
	Solution by Greedy Strategy
	Problem Decomposition
	Simpler Identification of subproblem
	Breaking Sequence into lines
	Analysis of lineBreak
	问题2：dynamic programming的实例
	问题3：Longest Common Subsequence
	问题3：Longest Common Subsequence
	问题4：Longest palindrome subsequence
	问题4：Longest palindrome subsequence
	问题5：Edit distance
	问题5：Edit distance
	问题6：Subset Sum
	Decomposition the Problem
	Basic Idea
	Main loop
	问题7：dynamic programming的实例 (续)

