> i2-3

DHE 622 >J1. 2. 3. 10. 11. 15. 16

6.1.

Consider the following salary computation problem. The input consists of a number N, a
list, BT (1), ..., BT(N), of before-tax salaries, and two tax rates, Rh for salaries that are
larger than M, and RI for salaries that are no larger than M. Here Rh and RI are positive
fractions, i.e., 0 < Rh, Rl < 1. It is required to compute a list, AT(1),..., AT(N), of
after-tax salaries, and two sums, Th and T'l, containing the total taxes paid according to
the two rates, respectively. Here is a solution to the problem. It calculates the after-tax

salaries first and then the tax totals: Th < 0;

for I from 1 to N do the following: ;,ll - 10;_ Rh:
if BT (1) > M then AT(I){—BT(I)X‘(I — Rh);] |Rl<1-RIL _
otherwise AT(I) < BT(I) x (1 — RI):; i vy e Totlowing:

Th «0: AT(I) « BT(I) X RR';

Tl ":_0 OZh};r:/isCh o

for I from 1 to N do the following: ?72(2 <T_lB+T(LI3)T(>;)-Rl,;
if BT(I) > MthenTh<«<Th+ BT(I)x Rh; TheThs*Rh
otherwise Tl < Tl + BT(I) x RI. Tl < TL=RL

(a) Suggest a series of transformations that will make the program as efficient as pos-

sible, by minimizing both the number of arithmetical operations and the number of
comparisons. Estimate the improvement to these complexity measures that is gained

by each of your transformations.

(b) How would you further improve the program, if you are guaranteed that no before-tax
salary is strictly less than M (i.e., there might be before-tax salaries of exactly M, but
not less)? How would you characterize the rate of improvement in this case?

Th < 0;
Tl « 0;
Rh <1 — Rh;
Rl «1 — RI;

forl from1to N do the following:

if BT(I) > M then
AT(I) « BT(I) X Rh/;
Th < Th+ BT();
otherwise
AT(I) « BT(I) x RI;
Tl « Tl + BT();
Th « Th *Rh;
Tl « Tl =Rl

=)

Th « 0;

Tl « 0;

Rh <« 1 — Rh;

LT « M = RI;

for I from1to N do the following:
if BT(I) > M then
AT(I) « BT(I) X Rh';
Th < Th+ BT(I);
otherwise
AT(I) « LT;
Tl «LT;

Th < Th *Rh;

6.3. Analyze the worst-case time complexity of each of the four algorithms given in Exer
cise 5.15 for computing m". Count multiplications only.

Worst Case: n =2k —1
iii. Algorithm Pwr3:

PW «1;
B <« m;
E <« n;
while E # 0 do the following:
if E is an even number then do the following:
B <~ B x B;
E <« E/2;
otherwise (i.e., if E is an odd number) do the following:
@ PW < PWxB;
E <« FE—1.

fO=f2°-1) =0
fB)=f2°-1)=3 fm)=f(2k-1)=2k-1
f(H=f2°-1) =5 :210g2(7(1+1)—)1

fAs)=f2* -1 =7

6.10. Analyze the worst-case time complexity of the algorithms for traversing and processing
information stored in trees that you were asked to design in Exercises 4.3 and 4.2.

* (a) Write an algorithm which, given a tree T, calculates the sum of the depths of all the nodes of T

* (b) Write an algorithm which, given a tree T and a positive integer K, calculates the number of nodes in T
at depth K.

* (c) Write an algorithm which, given a tree T, checks whether it has any leaf at an even depth.

DFS-VisiT(T, u):
Preorder processing of u; n
for each v child of u
Processing of edge uv(1); h-1
DFS-Visit(T,v);
Processing of edge uv(2);
Postorder processing of u;

Depth-first search

(a)

* Input: T-a tree

« Output: the sum of the depths of all
nodes of T

sum=0;
DFS-VisiIT(T, u, d):
sum+=d;
for each v child of u
d'=d+1;
DFS-Visit(T,v,d’);

FEHE
DFS-Visit(T,T.root,0)

43. Write algorithms that solve the following problems by performing breadth-first traversals
of the given trees. You may assume the availability of a queue Q. The operations on Q
include adding an item to the rear, retrieving and removing an item from the front, and
testing Q for emptiness.

(a) Given a tree T whose nodes contain integers, print a list consisting of the sum of
contents of nodes at depth 0, the sum of contents of nodes at depth 1, etc.

(b) Given atree T, find the depth K with the maximal number of nodes in 7. If there are
several such K's, return their maximum.

4 N\
L <« 0; . .
add(T. O): Each node joins and leaves the
repeat the following: queue exactly once.
L «— L +1;
S «— 0
add($. 0): O(n)

remove(V, Q)
while V # $ do the following:

S <« S + contents of V;

I —1;

while V has an /th offspring do the following:
VI <« Ith offspring of V;
add(VI, Q);
I «— I +1;

remove(V, Q);

print(““Sum of contents at level 7, L, “is ., S);

\until is-empty(Q).)

6.11.

Analyze the worst-case time and space complexities of the breadth-first algorithm for
checking whether a given tree is balanced you were asked to design in Exercise 4.7.

An arithmetic expression formed by non-negative integers and the standard unary oper-

ation “—" and the binary operations “+7, “=", “x”, and */”, can be represented by a
binary tree as follows:

m An integer / is represented by a leaf containing 1.

m The expression —E, where E is an expression, is represented by a tree whose root
contains “—"" and its single offspring is the root of a subtree representing the expression
E.

m The expression E % F, where E and F are expressions and “x”" 1s a binary operation,
is represented by a tree whose root contains “x”, its first offspring is the root of a
subtree representing the expression E and its second offspring is the root of a subtree
representing F.

Note that the symbol *—"" stands for both unary and binary operations, and the nodes of
the tree containing this symbol may have outdegree either 1 or 2.

We say that two arithmetic expressions E and F are isomorphic, if E can be obtained
from F by replacing some non-negative integers by others. For example, the expressions
(2+4+3)x6—(—4)and (7 + 0) x 6 — (—9) are isomorphic, but none of them is isomor-
phictoanyof (-2 4+ 3) x 6 —(—4)and (7 + 0) + 6 — (—9).

An expression E is said to be balanced, if every binary operation in it 1s applied to
two isomorphic expressions. For example, the expressions —5, (1 +2)*(3 4+ 35) and
((=3)/(—=4))/((=1)/(—=100)) are balanced, while 12 4+ (3 + 2) and (—3) % (—3) are not.

477. Design an algorithm that checks whether an expression is balanced, given its tree repre-
sentation. (Hint: perform breadth-first traversal of the tree.)

Here is an algorithm that checks whether the expression represented by the tree T is balanced.

t 1s based on the observation that the expression 1s balanced precisely if at every depth of T,
either all nodes contain integers or they all contain the same arithmetical operation (binary
and unary “—"" being considered different). We use a queue Q to perform a breadth-first
traversal of the tree and the special item $ to separate between nodes from different depths
inside the queue Q. Initially Q is empty. The result is set in the variable R, which is true
upon termination precisely if the expression 1s balanced.

(R < true; Y Time: O(n)
add(7, Q); Each node joins and leaves the queue exactly once.
while R is true and is-empt is false do the following:

wdd($, O); P(Q) . Space: O(n)
/remove(V, Q);
I PSS (=3)/(=4)/((=1)/(=100))
while V has an /th offspring do the following; F .
VI <« Ith offspring of V; /zi_i%_;
add(VI, Q); AREP=
_ I« T+1:
/r\ﬁluve(W, ()R \
while R is true and W # $ do the following:
if I = 1 and contents of V # contents of W then R « false;
J «—1; _
while R is true and J < I do the following: &\I\fi IEJ
if W has a Jth offspring then do the following: }% }ﬁ éi
WJ <« Jth offspring of W; _‘ij){—jdl\
add(WJ, Q);
J«—J+1
otherwise R <« false;
kremove(W, 0). /

Compare them with the complexities of a straightforward depth-first algorithm for the
same problem, which uses the algorithm for tree isomorphism that you were asked to
design in Exercise 4.6 as a subroutine applied to the offspring of every node containing a
binary operation.

4.6. Here is an algorithm that checks whether the expressions represented by the trees E; and E,
are isomorphic, and returns the result in R. Actually, the algorithm is not limited to binary DFS-Check(E)

trees not to any specific set of arithmetic operations. if (E is bynary)
’ _ if(DFS-Check(E.L)=false)return false;
R « trus; Xﬂ‘Elﬁ EZENDFS if(DFS-Check(E.R)=false)return false;

call check-isomorphic-of E, and E,. ;)
return check-isomorphic-of E.L and E.R;

The recursive subroutine check-isomorphic is defined by else return true:
?

subroutine check-isomorphic-of £, and E,: U SIS N
/ if either of E, or E, (or both) has first offspring then do the following\: > 'E H ‘@‘ %EZU? ID—J z //I\ {k ?
if contents|of E, # contents|of E, then R « false; 0:1
otherwise (i.e., E| and E> have equal contents) do the following: 1: 2
[<1 2:3

repeat the following:
if E; has an [th offspring then do the following:
EI, « Ithoffspring of E,;

K: K+1

Special Case: E is balanced

R, « true; _ . _
otherwise R, « false; with n binary operation
if E, has an [th offspring then do the following: K
EI, « Ithoffspring of E,; z 2% % (k + 1)
R, « true; k=0~log, n|

otherwise R, « false;
if both R; and R, are true then do the following:

call check-isomorphic-of £/, and El; 0 (Tl [g n)
I < I+1,;
otherwise, if either of R, or R, is true then R « false; ﬁﬁa DFSﬁ%%E'm/é\ ?

until at least one of R, R,, or R, is false;

k refurn j

6.15. Recall the problem of detecting palindromes, described in Exercise 5.10. In the following,
consider the two correct solutions to this problem: algorithm Pall, presented in Exercise
5.10, and algorithm Pal4, which you were asked to construct in Exercise 5.14. Assume
that strings are composed of the two symbols “a” and “b” only, and that the only operations
we count are comparisons (that is, applications of the eq predicate).

(c) Assume a uniform distribution of the strings input by the algorithms. In other words,
for each N, all strings of length N over the alphabet {a, b} can occur as inputs with
equal probability. Perform an average-case time analysis of algorithms Pall and Pal4.

Pall

Y < rev(S);
return equal(S$, Y).

O(n)

Assertion 1
____________ :
(o) /_Eifiiyi"?‘i‘f‘f‘lg_}
(1)

X8
Y A Assertion 2

§ =X -reverse(Y)

Y 1@ ez Yreverse (S)

Y « Y - last(X) @

Y

X « tail(X)

Pal4: X « §;
E <« true;

while X # A and E # false do the following:
if eq(head(X), last(X)) then X < all-but-last(tail(X));
otherwise E <« false.

return E.
R BES K 2k
S=a1a2 akbk b2b1
1
Pla; =b;) =Pla; # b)) =p =7

D MSEECHEE R (2) =pt kKb

2 itk (D) o212 (2) =pt ks

2

Avg(n) = p* -k + Z pt-i
i=1~k
=p*-k+(2-2p*—k-p*)
=2-2pf <2

B SHII EE y2k+1, A ZRALAL RS B 2R A4S 18

0(1)

