3-6 Decompositions of Graphs
(DFS, DAG, Toposort, Cycle, SCC)

Hengfeng Wei

hfwei@nju.edu.cn

October 29, 2018
Robert Tarjan

John Hopcroft

“For fundamental achievements in the design and analysis of algorithms and data structures.”

— Turing Award, 1986
DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirected graph are presented. The space and time requirements of both algorithms are bounded by $k_1 V + k_2 E + k_3$ for some constants $k_1, k_2, \text{and } k_3$, where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.
DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS

ROBERT TARJAN†

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirected graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants $k_1, k_2,$ and k_3, where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

“Depth-First Search And Linear Graph Algorithms”, Robert Tarjan

“DFS is a powerful technique with many applications.”
The Hammer of DFS
Power of DFS:

Graph Traversal \Longrightarrow Graph Decomposition
Power of DFS:

Graph Traversal \implies Graph Decomposition

Structure! *Structure!* *Structure!*
Graph *structure* induced by DFS:

- **States of** v
- **Types of** $u
ightarrow v$
Graph *structure* induced by DFS:

- **states of** v
- **types of** $u \rightarrow v$

lifetime of v:

- $v : d[v], f[v]$
- $f[v]$: **TOPSORT, SCC**
- $d[v]$: **BICOMP** (Problem 22-2)
Definition (Classification of Edges)

We can **define** four edge types in **terms of the depth-first forest** G_π produced by a DFS on G:

- **Tree edge**: edge in G_π
- **Back edge**: \rightarrow ancestor
- **Forward edge**: \rightarrow descendant (nontree edge)
- **Cross edge**: $\rightarrow (\neg\text{ancestor}) \land (\neg\text{descendant})$
DFS on Undirected Graphs (Problem 22.3-6)

Classifying an edge \((u, v)\) as a tree edge or a back edge according to whether \((u, v)\) or \((v, u)\) is encountered first during the depth-first search is equivalent to classifying it according to the ordering of the four types in the classification scheme.
DFS on Undirected Graphs (Problem 22.3-6)

Classifying an edge \((u, v)\) as a tree edge or a back edge according to whether \((u, v)\) or \((v, u)\) is encountered first during the depth-first search is equivalent to

classifying it according to the ordering of the four types in the classification scheme.
DFS on Undirected Graphs (Problem 22.3-6)

Classifying an edge \((u, v)\) as a tree edge or a back edge according to whether \((u, v)\) or \((v, u)\) is encountered first during the depth-first search is equivalent to classifying it according to the ordering of the four types in the classification scheme.

![Diagram of DFS on Undirected Graphs]

- 1. tree edge
- 2. tree edge
- 3. ???
Thanks. However, I am still confused. I have added an example to explain my confusion. Could you please have a look at it? – hengxin 3 hours ago

I am checking ... It looks like the answer is clear to me. – Apass.Jack 3 hours ago

I will let you try following the procedure in the book step by step for the next few minutes. Or tell me if you have already tried. (Hopefully, I will visit your university...) (this comment will be removed later.) – Apass.Jack 3 hours ago

I am going to update my answer now. It may take 5 minutes to half an hour. – Apass.Jack 2 hours ago

:) I am waiting (both on the Internet and in my university). – hengxin 2 hours ago

add a comment
Theorem (Theorem 22.10)

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof.

Let (u, v) be an arbitrary edge of G, and suppose without loss of generality that $u.d < v.d$. Then the search must discover and finish v before it finishes u (while u is gray), since v is on u’s adjacency list.

If the first time that the search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from v to u. Thus, (u, v) becomes a tree edge.

If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is still gray at the time the edge is first explored.
Theorem (Theorem 22.10)

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof.

Let (u, v) be an arbitrary edge of G, and suppose without loss of generality that $u.d < v.d$. Then the search must discover and finish v before it finishes u (while u is gray), since v is on u’s adjacency list.

If the first time that the search explores edge (u, v), it is in the direction from u to v, then v is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from v to u. Thus, (u, v) becomes a tree edge.

If the search explores (u, v) first in the direction from v to u, then (u, v) is a back edge, since u is still gray at the time the edge is first explored.
DFS on Undirected Graphs (Problem 22.3-6)

Classifying an edge \((u, v)\) as a tree edge or a back edge according to whether \((u, v)\) or \((v, u)\) is encountered first during the depth-first search is equivalent to

classifying it according to the ordering of the four types in the classification scheme.

“First Type” vs. “First Time”

<table>
<thead>
<tr>
<th>Tree edge</th>
<th>Back edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇐⇒</td>
<td>⇐⇒</td>
</tr>
</tbody>
</table>
“First Type” ⇐ “First Time”

tree edge ⇐ tree edge

back edge ⇐ back edge
“First Type” ⇐ “First Time”

tree edge ⇐ tree edge

back edge ⇐ back edge
“First Type” ⇐ “First Time”

tree edge ⇐ tree edge

back edge ⇐ back edge

Hengfeng Wei (hfwei@nju.edu.cn)
“First Type” \implies “First Time”

tree edge \implies tree edge

back edge \implies back edge
“First Type” \implies “First Time”

tree edge \implies tree edge

back edge \implies back edge
“First Type” \implies “First Time”

- tree edge \implies tree edge
- back edge \implies back edge
tree edge
tree edge

back edge

forward edge

cross edge
Edge Types and Lifetime of Vertices in DFS

∀u → v:

- tree/forward edge: [u [v]v]u
- back edge: [v [u]u]v
- cross edge: [v]v [u]u
Edge Types and Lifetime of Vertices in DFS

∀u → v:

- tree/forward edge: \([u \leftarrow v \rightarrow u]\)
- back edge: \([v \leftarrow u \rightarrow v]\)
- cross edge: \([v \rightarrow u \leftarrow v]\)

\[f[v] < d[u] \iff \text{cross edge}\]
Edge Types and Lifetime of Vertices in DFS

\[\forall u \rightarrow v : \]

- tree/forward edge: \([u \leftarrow v \rightarrow u]\)
- back edge: \([v \leftarrow u \rightarrow v]\)
- cross edge: \([v \rightarrow u \rightarrow v]\)

\[f[v] < d[u] \iff \text{cross edge} \]

\[f[u] < f[v] \iff \text{back edge} \]
Edge Types and Lifetime of Vertices in DFS

\[\forall u \rightarrow v : \]

- tree/forward edge: \([u \rightarrow v \rightarrow u]\)
- back edge: \([v \leftarrow u \rightarrow v]\)
- cross edge: \([v \rightarrow u \rightarrow v]\)

\[f[v] < d[u] \iff \text{cross edge} \]
\[f[u] < f[v] \iff \text{back edge} \]

\[\not\exists \text{ cycle} \implies u \rightarrow v \iff f[v] < f[u] \]
On digraphs:

\[\not\exists \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering} \]
On digraphs:

\[\neg \text{back edge} \iff \text{DAG} \iff \exists \text{topo. ordering} \]

Toposort by Tarjan (probably), 1976

\[\neg \text{cycle} \implies u \to v \iff f(v) < f(u) \]
On digraphs:

\[\# \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering} \]

Toposort by Tarjan (probably), 1976

\[\# \text{ cycle} \implies u \rightarrow v \iff f[v] < f[u] \]

Sort vertices in *decreasing* order of their *finish* times.
Cycle Detection (Problem 22.4-3)

Whether an undirected graph G contains a cycle?

$O(|V|)$
Cycle Detection (Problem 22.4-3)

Whether an undirected graph G contains a cycle?

$O(|V|)$

tree: $|E| = |V| - 1 \implies$ check $|E| \geq |V|$
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>back edge \iff cycle</td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hengfeng Wei (hfwei@nju.edu.cn)
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>back edge \iff cycle</td>
<td>back edge \iff cycle</td>
</tr>
<tr>
<td>BFS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hengfeng Wei (hfwei@nju.edu.cn)
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>back edge \iff cycle</td>
<td>back edge \iff cycle</td>
</tr>
<tr>
<td>BFS</td>
<td>cross edge \iff cycle</td>
<td></td>
</tr>
</tbody>
</table>
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>back edge \iff cycle</td>
<td>back edge \iff cycle</td>
</tr>
<tr>
<td>BFS</td>
<td>back edge \implies cycle</td>
<td>cross edge \iff cycle</td>
</tr>
<tr>
<td></td>
<td>cycle $\not\iff$ back edge</td>
<td></td>
</tr>
</tbody>
</table>
Cycle Detection

<table>
<thead>
<tr>
<th></th>
<th>Digraph</th>
<th>Undirected graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>back edge \iff cycle</td>
<td>back edge \iff cycle</td>
</tr>
<tr>
<td>BFS</td>
<td>back edge \implies cycle</td>
<td>cross edge \iff cycle</td>
</tr>
</tbody>
</table>
Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.
Theorem (Digraph as DAG)

Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:

\[
\text{digraph} \equiv \text{a dag of SCCs}
\]

SCC: equivalence class over reachability
digraph \equiv a dag of SCCs

Kosaraju’s SCC algorithm, 1978

“SCCs can be topo-sorted in decreasing order of their highest finish time.”
digraph \equiv a dag of SCCs

Kosaraju’s SCC algorithm, 1978

“SCCs can be topo-sorted in decreasing order of their highest finish time.”

The vertex with the highest finish time is in a source SCC.
digraph \equiv a \ dag \ of \ SCCs

Kosaraju’s SCC algorithm, 1978

“SCCs can be topo-sorted in decreasing order of their highest finish time.”

The vertex with the highest finish time is in a source SCC.

(I) DFS on G; DFS on G^T
digraph \equiv a \; dag \; of \; SCCs

Kosaraju’s SCC algorithm, 1978

“SCCs can be topo-sorted in decreasing order of their highest finish time.”

The vertex with the highest finish time is in a source SCC.

(I) DFS on \(G \); DFS on \(G^T \)

(II) DFS on \(G^T \); DFS on \(G \)
digraph \equiv a \text{ dag of SCCs}

Kosaraju’s SCC algorithm, 1978

“SCCs can be topo-sorted in decreasing order of their highest finish time.”

The vertex with the highest finish time is in a source SCC.

(I) DFS on G; DFS/BFS on G^T

(II) DFS on G^T; DFS/BFS on G
Semiconnected Digraph (Problem 4.14)

$$\forall u, v \in V : u \leadsto v \lor v \leadsto u$$
Semiconnected Digraph (Problem 4.14)

\[\forall u, v \in V : u \sim v \lor v \sim u \]

\[\text{digraph} \equiv \text{a dag of SCCs} \]
Semiconnected Digraph (Problem 4.14)

\[\forall u, v \in V : u \sim v \lor v \sim u \]

\text{digraph} \equiv \text{a dag of SCCs}
Semiconnected Digraph (Problem 4.14)

\[\forall u, v \in V : u \sim v \lor v \sim u \]

digraph \equiv a dag of SCCs

DAG: Semiconnected \iff \exists! \text{ topo. ordering}
DAG: Semiconnected $\iff \exists !$ topo. ordering
DAG: Semiconnected ⟺ ∃! topo. ordering

Tarjan’s TOPOSORT + Check edges \((v_i, v_{i+1})\)
DAG: Semiconnected $\iff \exists!$ topo. ordering

Tarjan’s Toposort + Check edges (v_i, v_{i+1})
Office 302
Mailbox: H016
hfwei@nju.edu.cn