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However, the sum principle will prove to be useful in a variety of problems.
Thus, the value of abstraction is that recognizing the abstract elements of
a problem often helps us solve subsequent probﬂems.
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[1) for i =1 ton—-—1

[2]) for = 1i+1 ton
[3) 1f (A[z2] > Al7])
(4] exchange A[1] and A[7]

How many times 15 the companson Ali] = A[s] made in Line 37
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i -~ critical operation

Principle 1.1 (Sum Prindple)

The size of a union of a famuly of mutually disjoint fimite sets 1s the
sum of the sizes of the sets.
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[1]
[2]
[3]
Y
(3]
(6]

for 2 =1 to r

for 7

=1 to m

5
5

BRI FEN ?

0
or k=1 to o

+ Ali,k] = Blk,]J]

How many multiplications (expressed in terms of r, m, and a) does this
pseudocode carry out in total among all the iterations of Line 37
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for 1 =1 to n—1
[ minval = A[1]
minindex = 1
for 7 = 1 to n
if (A[Jj] < minval)
minval = A[7]
minindex = 7J

exchange A[1] and A[minindex]
bigjump = 0
for 1 = 2 to n
1if (A[1i] > 2 % A[1 — 1])
bigjump = bigjump + 1
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easily solvable pieces. It we can decompose the problem into smaller pieces
and solve the smaller pieces, then we may be able to either add or multiply
solutions to smaller problems n ordkr to solve the larger problem. In this
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Principle 1.4 (Product Principle, Version 2)
If a set 5 of lists of length m has the properties that

|. there are 1y different first elements of lists in . and

2. for each j = | and each choice of the first ;j — | elements of a
list in §, there are i; choices of elements in position j of those
lists,

then there are iyis- - i = [ |4 iz lists in §.
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Principle 1.3  (Product Principle)

The size of a union of m disjoint sets, each of size n, 1s mn.

Principle 1.4 (Product Principle, Version 2)
If a set 5 of lists of length m has the properties that

|. there are 1y different first elements of lists in . and

2. for each j = | and each choice of the first ;j — | elements of a
list in §, there are i; choices of elements in position j of those
lists,

then there are iyis- - i = [ |4 iz lists in §.
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Principle 1.4 (Product Principle, Version 2)
If a set § of lists of length m has the properties that

l. there are 1, different first elements of lists in 5. and

2. for each j = | and each choice of the first j — | elements of a
list 1n §, there are 1; choices of elements in position j of those
lists,

then there are iyiy -« i = [ i, i lists in §.
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1) trianglecount = 0 @Tgﬁﬁ%ﬁ/\ﬁ
2) forizlltc:-z? jE{bJﬁu%?

(

(

(3) for j =141 ton

(4) for k= j+1 to n

(5) if points 1, j, and k are not collinear
(6) trianglecount = trianglecount + 1

Among all iterations of line 5 of the pseudocode, what 1s the total number
of times this line checks three points to see if they are collinear?

Principle 1.5 (Bijection Principle)

Two sets have the same size 1f and only if there 1s a one-to-one function
from one set onto the other.
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For aspcific j(1< j<n),the average value of |a, — jlis

1 Jj-1 1 Jj-1 n—j

—(|1 jl+2=j1+. +|F?—j|)——(Z(j—f)+Z(f—_}'))——(ZI+Zr)

=1 = j+1 =] i=1
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(A, B, C, D, E}. Consider the particular labeling in which A, B, and ) are
labeled blue and € and E are labeled red. Which lists correspond to this

labeling? They are

ABDCE ABDEC ADBCE ADBEC BADCE BADEC
BDACE BDAEC DABCE DABEC DBACE DBAEC,

g 12=120, w q=|2)-10
(3
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(A, B, C, D, E}. Consider the particular labeling in which A, B, and D are

labeled blue and € and E are labeled red. Which lists cormrespond to this
labeling? They are

ABDCE ABDEC ADBCE ADBEC BADCE BADEC
BIDDACE BDAEC DABCE DABEC DRACE DBAEC,
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We have k books to arrange on the n shelves of a bookcase. The order in
which the books appear on a shelf matters, and each shelf can hold all the

books. We will assume that as the books are placed on the shelves, they
are pushed as far to the left as they will go. Thus, all that matters is the

order in which the books appear. When book i 1s placed on a shelf, 1t can
go between two books already there or to the left or right of all the books
on that shelf.

i
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‘ Multiset 7] &0

The number of k-element multisets chosen from an n-element set 1s

n*_ n+k—1
K k |

T
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define two bookcase arrangements of k books on n shelves to be equivalent
if we get one from the other by permuting the books among themselves
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For your reference : Arithmetic -Geometric Series
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4 I = Z kZ, forn =0
O<k<n
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nn+1)(2n+1)

f(x) = x? 6

123 n x

The area under this curve is ['g x? dx = n?/3; therefore we know that Oy is

approximately +n°>.
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ALGORITHM 1 Generating the Next Permutation in
Lexicographic Order.

procedure next permutation(aa: - - - a,: permutation of
{1,2,...,n}notequalton n—1 --- 2 1)
Ji=n—1
while ¢; > a;
J=j—1
{7 is the largest subscript with @, < ag; 11}
k:=n
while a; > a;
k=k—1

{ax is the smallest integer greater than q; to the right of a;}
interchange a; and a;
¥y =mn
si=j+1
while r > s
begin
interchange a, and a;
r:=r —1
s:=s5+1
end
{this puts the tail end of the permutation after the jth position in increasing order}
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0.8-: 9, 13
n.20-: 15
n.30-:6,9, 14

n.54-: 8, 10, 15
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