Fide T

RAZAT i
e TCHi12. 13%&

I=]

1 : binary search trees

o T4/ binary tree¥R{Ebinary search tree?
o AFlhash tabletHtt, P 1E Adictionary FIHLHE %241

7
Y& N dynamic setle ?

Search
Insert
Delete
Minimum
Maximum
Successor

Predecessor

XRATAGMW? BINA
rAERSA R 247

Properly Drawn Tree

50 60,
o 6/0 ’

In a properly drawn
tree, pushing forward

o
to get the ordered list.

|B)@h1: binary search trees (4&)

TREE-SEARCH (x, k) ITERATIVE-TREE-SEARCH (X, k)
1 if x ==NIL or k == x.key 1 while x # NIL and k # x.key
2 return x 2 if £k < x.key

3 ifk < x.key 3 x = Xx.left

4 return TREE-SEARCH (X.left. k) 4 else x = x.right

5 else return TREE-SEARCH (x.right. k) 5 return Xx

o XWNEIEIIER &4

o PREETRTIAEATI I BT LN 2

o VRBEUEBH EATHY IR 1A 2

o VREEZE HENTRIE TR R ? @&

|BJ@R 1 : binary search trees (&)

TREE-MINIMUM (X) TREE-M AXIMUM(X)

1 while x.left # NIL 1 while x.right # NIL
2 X = Xx.left 2 X = Xx.right

3 returnx 3 returnx

o XWATFEIRNER T AT

o PRECTRIEEATH) FE I AR ?

o PREEUEMA EATHY R IENS 7

o fREeZ H eI IS AT I (RN 2

o IREEREEANTES pliid I 50 ?

|BJ@R 1 : binary search trees (&)

TREE-SUCCESSOR (X)
if x.right % NIL

1

2 return TREE-MINIMUM (x.right)
3 y=x.p

4 while y # NIL and x == y.right

5 X =y

6 y=y.p

7 returny

o XNEVERIMER 47

o PREETEIIA T) I BT AN 2
(successor2 M 1N IR ? NMTA?)

o PREEZE H'E Wiz 4T i) [a]ng 2

[BJ@R1: binary search trees (4t

o PREEMIIRIXANFIEN] T E T FE?
o fFAFEMFIAZ T —HRERE I binary search tree?
o WRAENEBXAM, G ?

TREE-INSERT(7. 2)

| y = NIL

2 x = T.mot

3 while x # NIL

- y=2Xx

5 if z.key < x.key
6 x = x.left
7 else x = x.right
8 zZp=y

9 if y==NIL

10 T.root = Z // tree T was empty
11 elseif z.key < y.key
12 y.left =z

13 else y.right = 2

|BJ@R 1 : binary search trees (&)

o RERFRIFR TS 4RI T T q
BSTIRERARRMITRARNT. b 5

o SEHFIAMGERAEIIBT - ,
gk R — g ? o & &

|BJ@R 1 : binary search trees (&)

o URELARIRR VLS ORI 5 T 102
BSTIRERARRMITRARNT. b 5

o SEHFIAMGERAEIIBT - ,
Lk L — e 2 “,M& b

}:ﬁ i
q q
Delete {3} Delet {4}
{c T ammm Tins -\'|...II.
I 'f- :
-I'J.}d{ ¥ I, _{' r \.1.
"ML A\C)Ir T

Delete(3) g g 4

Delet (4}
e
{Il:' & i f Z ;k(\ OIEIEIET (B8 R\
: -'H'- 5 ' I ¥ I- it 5 {: : : :;-r{ _.I}_{I-. '
N

/ Given two strings @ = dod; ...dp and b = bgby . . . by, where each a; and each b;
15 1n some ordered set of characters, we say that string a 1s lexicographically less
than string b if either

l. there exists an integer j, where 0 = j < min(p, g), such that a; = b; for all
i =0.1.....j—1land a; < b;,or

2. p=ganda; =b;foralli =0,1,..., p.

For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting

J = 3) and 10100 = 101000 by rule 2. This ordering is similar to that used in
English-language dictionanes.

The radix tree data structure shown n Figure 12.5 stores the bit strings 1011,

10, 011, 100, and 0. When searching for a key a = apa, ...a,, we go left at a

node of depth i if a; = 0 and right if a; = 1. Let 5 be a set of distinct bit strings

|‘n i1 whose lengths sum to n. Show how to use a radix tree to sort S lexicographically

in &(n) time. For the example in Figure 12.5, the output of the sort should be the
sequence 0, 011, 10, 100, 1011.

0] /2. Flhash tablefH b, PHEAE j\jdictionary, AR~ BE e 2
448 —48)

Hash tables are commonly said to have expected O(1) insertion and deletion times, but

this is only true when considering computation of the hash of the key to be a constant
time operation. When hashing the key is taken into account, hash tables have expected
O(k) insertion and deletion times, but may take longer in the worst-case depending on

how collisions are handled. Radix trees have worst-case O(k) insertion and deletion.

Figure 12.5 A radix tree storing the it stnngs 1011, 10,011, 100, and 0. We can determine each
node’s key by traversing the simple path from the oot to that node. There is no need, therefore, to
store the keys in the nodes; the kKeys appear here for dlustrative purposes only. Nodes are heavily
shaded 1f the Keys corresponding to them are not in the tree; such nodes ame present only o establish

a path to other nodes. /

e

Improving the Balancing by Rotation

The mlddle principal
subtree changes parent

I8)8m2 : red-black trees

e red-black treeeF- 1 2 AFEE ?
e No simple path from the root to a leaf is more than twice as long as
any other.

o Nt A= HA XL

1. Every node 1s either red or black.

The root 1s black.

Ll

Every leaf (NIL) 1s black.
If a node 1s red, then both its children are black.

“h

For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.

[BJRR2 . red-black trees (&)

o ¥z (red)ilE NS5, fixupH) FEEH AT A7
o [RFFHESEIS1E L HblackB =
o YHERAHIEHred

o PRIRFEREFNEHL 1 12

[AJ@R2: red-black trees ()

o ILATZ, y, xS ?

. o . q
e y moves 1nto z’s position.
By 00 s e
® X moves Into y’s position. i

« 5SBSTHIH, RBTHIM2E 23 RAH4 2

T T ST . da u

e y moves into z’s position. ‘g

e (ivesy the same color as z. !
MM EEIRER R AT N T

/ﬁ-‘/z)‘ Hﬂ‘ ,ﬂji;/—‘z:\}l&/il___{ ? b }3‘.‘

® %y:blaCkﬁj‘ g q

VERE N E TR e O P —
s -8

@ NIL X ._{

[AJ@R2: red-black trees ()

o UM BBy (black)
T SR)) 2

e X moves into y’s position.

e Push y’s blackness onto x.
o XN AREINER?
o xA] e HEblackness 75
%
o PRELMREEFNEG DUHI A DL T
7

o

[BJRR2 . red-black trees (&)

An AVL free is a binary search tree that is height balanced: for each node x, the
heights of the left and right subtrees of x differ by at most 1. To implement an AVL
tree, we maintain an extra attribute in each node: x.h is the height of node x. As
for any other binary search tree T', we assume that T.reot points to the root node.

Toinsert into an AVL tree, we first place a node into the appropriate place in bi-
nary search tree order. Afterward, the tree might no longer be height balanced.
Specifically, the heights of the left and right children of some node might differ
by 2. Describe a procedure BALANCE(x), which takes a subtree rooted at x
whose left and right children are height balanced and have heights that differ
by at most 2, i.e., |x.right.h — x.left.h| < 2, and alters the subtree rooted at x
to be height balanced.

(-

[BJRR2 . red-black trees (&)

Left Right Case Left Left Case

Balanced

- 5

Adversary Argument

e Letb =b,b, by b, bs be a bit string of length
5,1.e. €{0,1} b, for 1<i < 5. Consider the
problem of determining whether b contains
three consecutive ones, 1.e. whether or not b
contains the substring 111. We restrict our
attention to those algorithms whose only
allowable operation 1s to peek at a bit.

First Glance...

* Obviously 5 peeks are sufficient.

e A decision tree argument provides the fact
that at least one peek 1s necessary.

useless
L

included

Adversary Strategy

e Consider any algorithm for this problem and
start 1t on an unspecified bit / string of

length 5. The adversary strategy 1s to answer
0 to any b1t peek, unless that answer would

prove that b does not contain three
consecutive ones. 0olol1l1l1

1lzl 1 0/0[(0[1]0
b, |b, b, |b, by | | 0] 0 X |1|X

Daemon Algorithm: Peek

e Letx=I11111 and y = 00000
e Function flip(u,i)

e which takes a bit string u and flips it’s ith bit (0
to 1, or 1 to 0), then returns the new bit string.

* When the algorithm peeks at bit i, the
Daemon performs the algorithm Peek(7).

Daemon Algorithm: Peek

e Letx=11111 and y = 00000

e Function flip(u,i) |
. .. Peek(i)
e which takes a bit strin

‘1. 1f flip(x, i) contains
to 1, or 1 to 0), then re s sl 1117

* When the algorithm 2. x « #lip(x, i)
Daemon performs th¢3. answer 0
4. else

5. v «flip(y, i)
6. answer |

Lower Bound by Adversary Strategy

e [f only 3 peeks have been performed, then y
can contain at most 2 ones.

e To prove this, assume that after peeking at 3 bits, y
contains 3 ones. Then it must be the case that if any
of those bits were flipped in x =11111, then x would
not contain the substring 111. But there are not 3
such bits in x =11111.

e If only 3 peeks are performed, y cannot contain
the substring 111.

e Algorithm with 3 peeks could not possibly be
correct

e [f the verdict 1s yes, we can claim that b =y
e Else 1f the verdict 1s no, we can claim that b = x

(-

Possible Solution

* The height of this decision tree 1s 4, by the
above proof, this is the optimal algorithm.

//0//3\ |

. e
N/4\ 4/1\Y
VAN / N\

No Yes No Yes

Analysis of Finding the Second

e Any algorithm that finds secondLargest must also
find max before. (n-1)

e The secondLargest can only be 1n those which lose
directly to max.

* On 1ts path along which bubbling up to the root of
tournament tree, max beat rlgn_| keys at most.

e Pick up secondLargest. (rlgn_| -1)
° p+ rlgn_|-2

Lower Bound by Adversary

e Theorem

e Any algorithm (that works by comparing keys)
to find the second largest 1n a set of n keys must
do at least nH lgn |-2 comparisons in the worst
case.

e Proof

There 1s an adversary strategy that can force any
algorithm that finds secondLargest to compare
max to | 1gn | distinct keys.

Note: for one comparison,

Wei ghted Key the weight increasing is no

more than doubled.

* Assigning a weight w(x) to each key. The

initial values are ali’1.
e Adversary rules:
Case Adversary reply Updating of weights
wopw() < oy =) ())0
wix)=w(y)>0 >y W) =w(x)wiy); w(y)=0
W(y)>w(x) g w(y)=w(x)wiy); w(x)=0
w(x)=w(y)=0 Consistent with previous replies No change /

Z.ero=L.oss

/

		Case

		Adversary reply

		Updating of weights

		w(x)>w(y)

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(x)=w(y)>0

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(y)>w(x)

		y>x

		w(y):=w(x)+w(y); w(x):=0

		w(x)=w(y)=0

		Consistent with previous replies

		No change

e

Lower Bound by Adversary: Details
e Note: the sum of weights 1s always n.

e Let x 1s max, then x 1s the only nonzero weighted
key, that 1s w(x)=n.

* By the adversary rules:
W)= 2w (x)

e Let K be the number of comparisons x wins against
previously undefeated keys:

n=wy (x)<2%w,(x)=2%
* So, Kzrlgn—|

Tracking the Losers to MAX

To be filled
with winners

Building a heap

structure of 2n-1
entries, using n-1
extra space

Qg (39 Gy nbsltries in mnput

	计算机问题求解 – 论题2-11
	问题1：binary search trees
	幻灯片编号 3
	Properly Drawn Tree
	问题1：binary search trees (续)
	问题1：binary search trees (续)
	问题1：binary search trees (续)
	问题1：binary search trees (续)
	问题1：binary search trees (续)
	问题1：binary search trees (续)
	幻灯片编号 11
	Improving the Balancing by Rotation
	问题2：red-black trees
	问题2：red-black trees (续)
	问题2：red-black trees (续)
	问题2：red-black trees (续)
	问题2：red-black trees (续)
	问题2：red-black trees (续)
	Adversary Argument
	First Glance…
	Adversary Strategy
	Daemon Algorithm: Peek
	Daemon Algorithm: Peek
	Lower Bound by Adversary Strategy
	Possible Solution
	Analysis of Finding the Second
	Lower Bound by Adversary
	Weighted Key
	Lower Bound by Adversary: Details
	Tracking the Losers to MAX

