3-9 o] AR

i

TRIBBRM R R E X ARG R 117

Definition 2.2.3.3. A Boolean variable is any symbol to which one con
associate either of the values 0 or 1.

Let X = {x1,....2a} be a set of Boolean variables for some n € N. A
Boolean function over X is any mapping f from {0,1}" to {0,1}. One
denotes f by f(xy1,T2,..-,Tn) if one wants to call attention to the names
of its variables.

5
8
S
5
W
—
=
g
]
b
&
“w
<

Truth table

-0 000
—OoOHOHOFO

0
0
1
1
0
0
1
1

Nl(f(zl, T2, $3)) = {(0707 0)7 (0’ 1, 1)’ (1707 O)r (17 1, 0)}1 and
No(f(wl: x2,73)) = {(0! 0,1),(0,1,0),(1,0,1), (1,1, 1)}

Input assignment

(Zy ANT2 AT3) V(TL Aza Aa3) V(21 ATa AT3) V (21 A T2 AT3)

Complete DNF

(a) (b)

(z1Vza VE) A (21 VI VI3) A(TL V2o VI3) A (T1 VT2 VT3)

Complete CNF Branching program

2023/11/13 2

DNTE—=PRR, BNATAFTERER TR

xR AR

The main goal of this section is to give definitions of no-
tions that are sufficient for fixing the representation of some input data and
thus to precisely formalize the definitions of some fundamental algorithmic
problems. We also need the terms defined here for the abstract considerations
of the complexity theory in Section 2.3.3 and for proving lower bounds on
polynomial-time inapproximability in Section 4.4.2.

2023/11/13 4

Alphabet (ZFH3k)
= Symbol (fF5)
m Word (1d))
® concatenation, prefix/suffix/subword, Number(u)=>3 u; 2"
m Language (i) .
® concatenation

2023/11/13 5

m Alphabet (FH&3k)
= Symbol (fF5)
m Word (1d))
® concatenation, prefix/suffix/subword, Number(u)=>3 u; 2"
m Language (i) -
® concatenation

m fREERIT—FMES KRR TERG?
Rt FER. 18 BEP3IETA7
o EUFEFH—REIKIARFEIAAS
o —KEIF
o —ERUIM

[]

REEBCHE—TEBEETNE TG

2023/11/13 6

RIERmENEXMRR T EaEG?

One can use the alphabet {0,1, #} to code graphs. If Mg = [a;;]i j=1,..n
is an adjacency matrix of a graph G of n vertices, then the word

111412 ... A1nF#021022 ... 020 FF ... FAn1An2 . . . Ann

can be used to code G.

2023/11/13 7

PRIZ X Lt 1 157

Definition 2.3.1.10. Let ¥ = {sy,52,...,5n), m = 1, be an alphabet, and
let 57 < 89 < --- < 8, be a linear ordering on L. We define the canonical
ordering on L* as follows. For all u,ve X*,

u<vif lul < vl
or lu| = |v|, u = zs;u’, and v = zs5;0'

for some z,u' v € E*, and i < j.

s Bk A BE— AL
B N — R B HE R ID?

2023/11/13 8

TR RRIX R 7S

Thousands of algorithmic problems classified according to different points of
view are considered in the literature on algorithmics. In this book we deal
with hard problems only. We consider a problem to be hard if there is no
known deterministic algorithm {(computer program) that solves it efficiently.
Efficiently means in a low-degree polynomial time. Our interpretation of hard-
ness here is connected to the current state of our knowledge in algorithmics
rather than to the unknown, real difficulty of the problems considered. Thus,
a problem is hard if one would need years or thousands of years to solve it
by deterministic programs for an input of a realistic size appearing in the
current practice. This book provides a handbook of algorithmic methods that
attack hard problems. Thousands of problems of great practical relevance are
very hard from this point of view. Fortunately, we do not need to define and
to consider all of them. There are some crucial, paradigmatic problems such
as the traveling salesperson problem, linear (integer) programming, set cover
problem, knapsack problem, satisfiability problem, and primality testing that
are pattern problems in the sense that solving most of the hard problems can
be reduced to solving some of the paradigmatic problems.

2023/11/13 9

TR RRIX R 7S

Every algorithm (computer program) can be viewed as an execution of a
mapping from a subset of X} to 23 for some alphabets '), and 5. So, every
(algorithmic) problem can be considered as a function from X} to X3 or as
a relation on X} x XJ for some alphabets X} and X3. We usually do not
need to work with this kind of formalism because we consider two classes of
problems only — decision problems (to decide for a given input whether it has
a prescribed property) and optimization problems (to find the “best” solution
from the set of solutions determined by some constraints). In what follows we

m Hrpgywordsy 3247

2023/11/13

Definition 2.3.2.1. 4 decision problem is a triple (L,U, X)) where X is

an alphabet and L CU C X*. An algorithm A solves (decides) the decision
problem (L, U, X)) if, for every z € U,

(i) A(z) =1ifz €L, and
(it) A(z) =0ifxecU~L (x ¢ L).

m HepmywordgHA4”?

2023/11/13 11

PRIB AR Lo 1 1Y

Definition 2.3.2.1. 4 decision problem is a triple (L,U, X)) where X is

an alphabet and L CU C X*. An algorithm A solves (decides) the decision
problem (L, U, X)) if, for every z € U,

(i) A(z) =1ifz €L, and

(it) A(z) =0ifxecU~L (x ¢ L).
= HApword: g T4’

m {RIEMRXERTE T D7

An equivalent form of a description of a decision problem is the following
form that specifies the input-output behavior.

Problem (L,U, X)

Input: AnzeU.
Output: “yes” if x € L,
“no” otherwise.

For many decision problems (L, U, X) we assume U = X*. In that case we
shall use the short notation (L, X'} instead of (L, X*, X).

2023/11/13 12

R PHAIERR 7157 XERNLZFAY

PRIMALITY TESTING.

Informally, primality testing is to decide, for a given positive integer, whether
it is prime or not. Thus, primality testing is a decision problem (PRIM, Xp,5),
where

PriMm = {w € {0,1}" | Number(w) is a prime}.

Another description of this problem is
Primality testing

Input: Anz e X},
Output: "yes" if Number(z) is a prime,
“no” otherwise.

2023/11/13 13

RIEfRIX R g

One can easily observe that primality testing can also be considered for
other integer representations. Using Xy = {0,1,2,...,k — 1} and the k-ary
representation of integers we obtain (PRiMg, Xk), where

PriMg = {z € X} |z is the k-ary representation of a prime}.

From the point of view of computational hardness it is not essential whether
we consider (PRIM, Xp,01) or (PRIMg, X)) for some constant k because one
has efficient algorithms for transferring any k-ary representation of an integer
to its binary representation, and vice versa. But this does not mean that
the representation of integers does not matter for primality testing. If one
represents an integer n as

#bin(p1)#bin(p2)# ... #bin(p)

over {0,1,#}, where n = p; - p2- --- - p and p;s are the nontrivial prime
factors of n, then the problem of primality testing becomes easy. This sensi-
bility of hardness of algorithmic problems according to the representation of
their inputs is sometimes the reason for taking an exact formal description of
the problem that fixes the data representation, too. For primality testing we
always consider (PRIM, X},0;) as the formal definition of this decision problem.

2023/11/13 14

TR PHAIE R 7157 XERLETAY

EQUIVALENCE PROBLEM FOR POLYNOMIALS.

The problem is to decide, for a given prime p and two polynomials p,(zy,. ..,
Zm) and p2(z1,...,ZTm) over the field Z,, whether p; and p; are equivalent,
i.e., whether pi(x1,...,Zm) — p2(x1,...,2m) is identical 0. The crucial point
is that the polynomials are not necessarily given in a normal form such as

ag + a1z) + a2x2 + ay1ar1T2 + afmf + a%m% + -
but in an arbitrary form such as
(.’El + 3.’1)2)2 . (2371 + 4.’174) . :E%

A normal form may be exponentially long in the length of another represen-
tation and so the obvious way to compare two polynomials by transferring
them to their normal forms and comparing their coefficients is not efficient.

We omit the formal definition of the representation of polynomials in an
arbitrary form over the alphabet X,,; = {0,1,(,),exp, +,}, because it can
be done in a similar way as how one represents formulae over Xj,4c. The
equivalence problem for polynomials can be defined as follows.

EQ-POL

Input: A prime p, two polynomials p; and ps; over variables from X =
{z1,29,...}.

Output: “yes” if py = po in the field ZZ,,,
“no” otherwise.

2023/11/13 15

R PHAIERR 7157 XERNLZFAY

EQUIVALENCE PROBLEM FOR ONE-TIME-ONLY BRANCHING
PROGRAMS.

The equivalence problem for one-time-only branching programs, EQ-1BP,
is to decide, for two given one-time-only branching programs B, and Bs,
whether B; and B; represent the same Boolean function. One can represent
a branching program in a similar way as a directed weighted graph?® and so
we omit the formal description of branching program representation.?°

EQ-1BP

Input: One-time-only branching program B; and B3 over a set of Boolean
variables X = {z1, z2,73,...}.
Output: “yes” if By and By are equivalent (represent the same Boolean
function),

no otherwise.

2023/11/13 16

R PHAIERR 7157 XERNLZFAY

SATISFIABILITY PROBLEM.

The satisfiability problem is to decide, for a given formula in the CNF, whether
it is satisfiable or not. Thus, the satisfiability problem is the decision prob-
lem (SAT, Xiogic), where

SAT = {w € X . |wis a code of a satisfiable formula in CNF}.

logic

We also consider specific subproblems of SAT where the length of clauses of
the formulae in CNF is bounded. For every positive integer £ > 2, we define
the k-satisfiability problem as the decision problem (kSat, Xi,4.), where

kSAT = {w € X} ._|w is a code of a satisfiable formula in k<CNF}.

logic

In what follows we define some decidability problems from graph theory.

2023/11/13 17

R PHAIERR 7157 XERNLZFAY

CLIQUE PROBLEM.

The clique problem is to decide, for a given graph G and a positive integer k,
whether G contains a clique of size k (i.e., whether the complete graph Kj of
k vertices is a subgraph of G). Formally, the clique problem is the decision
problem (CLIQUE, {0, 1,#}), where

CLIQUE = {z#w € {0,1,#}" | z € {0,1}"* and w represents a graph

that contains a clique of size Number(z)}.

An equivalent description of the clique problem is the following one.
Clique Problem
Input: A positive integer k and a graph G.

Output: “yes” if G contains a clique of size k,
“no” otherwise.

2023/11/13 18

R PHAIERR 7157 XERNLZFAY

VERTEX COVER PROBLEM.

The vertex cover problem is to decide, for a given graph G and a positive
integer k, whether G contains a vertex cover of cardinality k. Remember that
a vertex cover of G = (V, E) is any set S of vertices of G such that each edge
from F is incident to at least one vertex in S.

Formally, the vertex cover problem (VCP) is the decision problem

(VCP, {0,1,+#}), where

VCP = {u#w € {0,1,#}* | u e {0,1}" and w represents a graph that

contains a vertex cover of size Number(u)}.

2023/11/13 19

R PHAIERR 7157 XERNLZFAY

HAMILTONIAN CYCLE PROBLEM.

The Hamiltonian cycle problem is to determine, for a given graph G, whether
G contains a Hamiltonian cycle or not. Remember that a Hamiltonian cycle
of G of n vertices is a cycle of length n in G that contains every vertex of G.

Formally, the Hamiltonian cycle problem (HC) is the decision problem
(HC,{0,1,#1}), where

HC = {w € {0,1,#}" | w represents a graph that
contains a Hamiltonian cycle}.

2023/11/13 20

RERX A ERR TG XERNLEMFAY

EXISTENCE PROBLEMS IN LINEAR PROGRAMMING.

Here, we consider problems of deciding whether a given system of linear equa-
tions has a solution. Following the notation of Section 2.2.1 a system of linear
equations is given by the equality

A-X=0b,
where A = [ai;]i=1,...,m,j=1,..,n 15 an m X n matrix, X = (21,22,...,3,)7,
and b = (by,...,b,)" is an m-dimensional column vector. The n elements
Z1,%2,...,%, of X are called unknowns (variables). In what follows we con-

sider that all elements of 4 and b are integers. Remember, that
Sol(A,b) = {X CIR"|A-X = b}

denotes the set of all real-valued solutions of the linear equations system A -
X = b. In what follows we are interested in deciding whether Sol(A4,b) is
empty or not (ie., whether there exist a solution to A+ X = b) for given
A and b. More precisely, we consider several specific decision problems by
restricting the set Sol(A, b) to subsets of solutions over Z™ or {0,1}" only, or
even considering the linear equations over some finite fields instead of IR. Let

Solg(A,b) = {X TS| A- X = b}

for any subset S of R.

First of all observe that the problem of deciding whether Sol(A,b) = @
is one of the fundamental tasks of linear algebra and that it can be solved
efficiently. The situation essentially changes if one searches for integer solutions
or Boolean solutions. Let (A, b) denote a representation of a matrix 4 and a
vector b over the alphabet {0, 1,4}, assuming all elements of A and b are
integers,

The problem of the existence of a solution of linear integer pro-
gramming is to decide whether Solz(A,b) = 0 for given A and b. Formally,
this decision problem is (SoL-IP,{0,1, #}), where

SoL-TP = {(4,b) € {0,1,#}* | Sol z(A,) # 0}.

2023/11/13 21

TRIE X LA (g

Definition 2.3.2.2. An optimization problem is a 7-tuple U = (X, Yo, L,
L1, M, cost, goal), where

(i) X is an alphabet, called the input alphabet of U,
(i) Xo is an alphabet, called the output alphabet of U,
(ir) L C X} is the language of feasible problem instances,
(iv) Ly C L is the language of the (actual) problem instances of U,
(v) M is a function from L to Pot(X%),*" and, for every z € L, M(x) is
called the set of feasible solutions for x,
(vi) cost is the cost function that, for every pair (u,z), where u € M(z) for
some x € L, assigns a positive real number cost(u, z),
(vit) goal € {minimum, mazimum}.

For every x € Ly, a feastble solution y € M(x) is called optimal for x and

U if
cost(y, z) = goal{cost(z,z) [z € M(x)}.

For an optimal solution y ¢ M(x), we denote cost(y,z) by Opty(x). U is
called a maximization problem if goal = maximum, and U/ is a minimiza-
tion problem if goal = minimum. In what follows Outputy () M(x)
denotes the set of all optimal solutions for the instance xz of U.

2023/11/13 22

TR RRIX R 7S

The language L is the set of codes of all problem instances (inputs) for
which U is well defined. L; is the set of actual problem instances (inputs) and
one measures the computational hardness of U according to inputs of L;. In
general, one can simplify the definition of U by removing L and the definition
will work as well as Definition 2.3.2.2. The reason to put this additional in-
formation into the definition of optimization problems is that the hardness of
many optimization problems is very sensible according to the specification of
the set of considered problem instances (L;). Definition 2.3.2.2 enables one to
conveniently measure the increase or decrease of the hardness of optimization
problems according to the changes of L; by a fixed L.

Definition 2.3.2.3. Let Uy = (X1, Xo, L, L1, M, cost, goal) and Us = (X},
Yo, L,Lra, M, cost, goal) be two optimization problems. We say that U; is a
subproblem of Us if Ly € Ly 2.

= {REEMER BT D7

2023/11/13 23

TRIE X A 7 15

An algorithm A is consistent for U if, for every x € Ly, the output
A(m) € M(z). We say that an algorithm B solves the optimization problem

U if

(i) B is consistent for U, and
(iz) for every x € L1, B(x) is an optimal solution for x and U.

2023/11/13 24

TRIEFEX LA o) R (g7

Traveling Salesperson Problem (TSP)

Input: A weighted complete graph (G,c), where G = (V,E) and ¢ : E —
IN. Let V = {v),...,v,} for some n € IN — {0}.

Constraints: For every input instance (G,c), M(G,c) = {vi;, Vigs ..., Vi,
v;, | (81,42, ...,1,) is a permutation of (1,2,...,n)}, i.e., the set of
all Hamiltonian cycles of G.

Costs: For every Hamiltonian cycle H = v;, v;, ... v v, € M(G,¢),
cost((Viy, Vigs - - - Vi, Uiz), (G €)) = 2?21 c({i, Vigy moa n)+1})v
i.e., the cost of every Hamiltonian cycle H is the sum of the weights
of all edges of H.

Goal: mimimum.

n ENNHERBENTAY

2023/11/13 25

TRIEFEX LA o) R (g7

Now we define two subproblems of TSP.

The metric traveling salesperson problem, A-TSP, is a subproblem
of TSP such that every problem instance (G, ¢) of A-TSP satisfies the triangle
inequality

e({u.}) < el{u,w}) + e({w,v})

for all vertices u, w,v of G.

The geometrical traveling salesperson problem (Euclidean TSP)
is a subproblem of TSP such that, for every problem instance (G, c) of TSP,
the vertices of G can be embedded in the two-dimensional Euclidean space
in such a way that c¢({u,v}) is the Euclidean distance between the points
assigned to the vertices u and v for all u,v of G. A simplified specification
of the set of input instances of the geometric TSP is to say that the input is
a set of points in the plane and the cost of the connection between any two
points is defined by their Euclidean distance.

Since the two-dimensional Euclidean space is a metric space, the Euclidean
distance satisfies the triangle inequality and so the geometrical TSP is a sub-
problem of A-TSP.

n ENNHERBENTAY

2023/11/13

TRIEFEX LA o) R (g7

Makespan Scheduling Problem (MS)

Input: Positive integers py,pa,...,pn and an integer m > 2 for some n €
IN — {0}.

{p; is the processing time of the ith job on any of the m available
machines}.

Constraints: For every input instance (py, ..., pn, m) of MS,
M(pl,...,pn,m) = {S],SQ,..-,Sm|Si g {1,2,...,7},} for i =
L...,m Upe, Sk =1{1,2,...,n}, and S;NS; =0 for i # j}.
{M(p1,...,pn,m) contains all partitions of {1,2,...,n} into m
subsets. The meaning of (S),S5;,...,Sm) is that, fori = 1,...,m,
the jobs with indices from S; have to be processed on the ith
machine}.

Costs: For each (Sy,S2,...,Sm) € M(p1,...,pn,m),

cost((S1, ..., Sm), (P1, -1 Pn, M) = max{zlesi pli=1,...,m}.
Goal: minimum.

n ENNHERBENTAY

2023/11/13 27

TRIEFEX LA o) R (g7

Minimum Vertex Cover Problem (MIN-VCP)

Input: A graph G = (V| E).
Constraints: M{G) = {S C V | every edge of F is incident to at least one
vertex of S}.

Cost: For every S € M(G), cost(S,G) =|S|.

Goal: MANITNUIN..

n ENNHERBENTAY

2023/11/13 28

TRIEFEX LA o) R (g7

Set Cover Problem (SCP)

Input: (X, F), where X is a finite set and F C Pot(X) such that X =

User 5.
Constraints: For every input (X, F),

M(X,F)={CC F|X = Ugec S}-
Costs: For every C € M(X,F), cost(C,(X,F)) =|C|.

Goal: minimum.

Later we shall observe that MIN-VCP can be viewed as a special subprob-
lem of SCP because, for a given graph G = (V, E), one can assign the set S,
of all edges adjacent to v to every vertex v of G.

n ENNHERBENTAY

2023/11/13 29

TRIEFEX LA o) R (g7

Weighted Minimum Vertex Cover Problem (WEIGHT-VCP)

Input: A weighted graph G = (V, E,¢), ¢: V — IN - {0}.
Constraints: For every input instance G = (V, E, ¢),
M(G) = {S C V|S is a vertex cover of G}.
Cost: For every S € M(G), G =(V,E,¢),
cost(S, (V, E,¢)) = $yes (0.
Goal: manimum.

n ENNHERBENTAY

2023/11/13 30

TRIEFEX LA o) R (g7

Maximum Clique Problem (Max-CL)

Input: A graph G =(V,E)

Constraints: M(G) ={S C V| {{u,v}|u,ve S,u #v} C E}.
{M(G) contains all complete subgraphs (cliques) of G}

Costs: For every S € M(G), cost(S,G) = |S].

Goal: mazimum.

n ENNHERBENTAY

2023/11/13 31

TRIEFEX LA o) R (g7

Maximum Cut Problem (Max-CurT)

Input: A graph G = (V, E).
Constraints:

M(G) = {(V1,V2) [Vi UVa =V, Vi # 0 # Vo, andVi NV = 0}.
Costs: For every cut (V1,V3) € M(G),

cost((Vi, V), G) = |E N {{u, v} |u € Vi, v € Va} |

Goal: mazimum.

The minimum cut problem (MIN-CUT) can be defined in the same way
as MAX-CuT. The only difference is that the goal of MIN-CUT is minimum,

n ENNHERBENTAY

2023/11/13 EY)

TRIEFEX LA o) R (g7

Simple Knapsack Problem (SKP)

Input: A positive integer b, and positive integers wy, w2, ..., w, for some
n e N —{0}.

Constraints: M(b, wy,wa,...,ws) = {T C{1,...,n}| Yier Wi < b},
i.e., a feasible solution for the problem instance b, wy,ws,...,wy, is
every set of objects whose common weight does not exceed b.

Costs: For each T € M(b,wy,ws,...,wy,),

cost(T, b, w1, wa,...,wn) = E o w;.
t€T

Goal: MAaTImum,

n ENNHERBENTAY

2023/11/13 33

TRIEFEX LA o) R (g7

Knapsack Problem (KP)

Input: A positive integer b, and 2n positive integers w;, wa,..., Wy, C1,

€2, ...,Cn for some n € IN — {0}.
Constraints:

M(b,wi,...,wn,C1,...,Cn) = {T C{L,...,n}| Y.erwi < b}
Costs: Foreach T' € M(b,wy,...,Wn,C1,...,Cpn),

cost(T,b,wl,...,wn,cl,...,cn)=E G
€T

Goal: maximum.

n ENNHERBENTAY

2023/11/13 34

TRIEFEX LA o) R (g7

Bin-Packing Problem (BIN-P)

Input: 7 rational numbers wy, w2, ..., w, € [0,1] for some positive integer
n.

Constraints: M(wy,wa,...,wn) = {S C {0,1}"| for every s € S,
sT - (wi,wa,...,wp) <1,and Y ,cgs=(1,1,...,1)}
{if S = {51,82,...,8m}, then s; = (s, Si2,..., Sin) determines
the set of objects packed in the ith bin. The jth object is packed into
the ith bin if and only if s;; = 1. The constraint

s;'r'(wlr"awn)gl

assures that the 7th bin is not overfilled. The constraint

S s=(1,1,...,1)

s€ES

assures that every object is packed in exactly one bin.}
Cost: For every S € M(wy,ws, ..., wy),

cost(S, (wy, - .., wn)) = |S|.

Goal: minimum.

n ENNHERBENTAY

2023/11/13 35

TRIEFEX LA o) R (g7

Maximum Satisfiability Problem (MaAx-SAT)

Input: A formula @ = Fy AFo A--- A F,, over X = {z1,%2,...} in CNF
(an equivalent description of this instance of MAX-SAT is to consider

the set of clauses F1, Fa,..., Fi,).

Constraints: For every formula @ over the set {z1,...,z,} C X, n € IN—{0},
M(P) = {0,1}™.
{Every assignment of values to {zi,...,z,} is a feasible solution,

i.e., M(®P) can also be written as {a|a : X — {0,1}}.
Costs: For every @ in CNF, and every a € M(®P),

cost(a,) is the number of clauses satisfied by a.
Goal: mazimum.

n ENNHERBENTAY

2023/11/13 36

TRIEFEX LA o) R (g7

We consider several subproblems of MAX-SAT here. For every integer k >
2, we define the MAX-kSAT problem as a subproblem of MAX-SAT, where
the problem instances are formulae in kKCNE33. For every integer k > 2, we
define the MAX-EESAT as a subproblem of MAX-kSAT, where the inputs are
formulae consisting of clauses of the size k only. Each clause [y VoV --- VI
of such a formula is a Boolean function over exactly k variables, i.e., [; # [;
and l; #1; for all 4,5 € {1,...,k}, i # j.

n ENNHERBENTAY

2023/11/13

TRIEFEX LA o) R (g7

Linear Programming (LP)

Input: A matrix A = [a;5]i=1,...,m,j=1,...,n, @ vector b € IR™, and a vector
ceR", n,me N - {0}.

Constraints: M(A,b,c) = {X € R"|A-X =b and the elements of X
are non-negative reals only}.

Costs: For every X = (z1,...,Z,) € M(A,b,c), c = (c1,...,¢n)T,
cost(X,(A,b,c)) =c" - X =31 | cix;.

Goal: minimum.

n ENNHERBENTAY

2023/11/13 38

TRIEFEX LA o) R (g7

Integer Linear Programming (IP)

Input: An m x n matrix A = [a;j]i=1,...,m,j=1,....n, and two vectors b =
(bry- . bm)T, e = (c1,...,c,)T for some n,m € IN—{0}, ai;, bs, ¢;
are integers fori =1,...,m, j=1,...,n.

Constraints: M(A,b,¢) = {X = (x1,...,2n) € Z"|AX =band z; > 0
fori=1,...,n}.

Costs: For every X = (z1,...,2,) € M(A,b,¢),
cost(X, (A, b,¢)) = Y- | cizi.

Goal: minimum.

Note that IP is not a subproblem of LP, because we did not restrict the
language of inputs only, but also the constraints.

The 0/1-Linear Programming (0/1-LP) is the optimization problem
with the language of input instances of IP and the additional constraints
requiring that X € {0,1}" (i.e., that M(A,b,c) C {0,1}").

n ENNHERBENTAY

2023/11/13 39

TRIEFEX LA o) R (g7

Maximum Linear Equation Problem Mod k (Max-LiNMobk)

Input: A set S of m linear equations over n unknowns, n,m € IN — {0},
with coefficients from Z,.
(An alternative description of an input is an m x n matrix over Z,
and a vector b € Z}").

Constraints: M(S) = Z}"
{a feasible solution is any assignment of values from {0,1,...,k—1}
to the n unknowns (variables)}.

Costs: For every X € M(S),

cost(X, S) is the number of linear equations of S satisfied by X.
Goal: maximum.

n ENNHERBENTAY

2023/11/13 40

TRIEFEX LA o) R (g7

For every prime k, and every positive integer m, we define the problem
Max-EmLINMobDk as the subproblem of MaX-LINMODE, where the input
instances are sets of linear equations such that every linear equation has at
most m nonzero coefficients (contains at most m unknowns).

n ENNHERBENTAY

2023/11/13 41

TRBELEE — MU B AN E X N BV H) E (B A M 7

Minimum Vertex Cover Problem (MIN-VCP)

Input: A graph G = (V, E).

Constraints: M(G) = {S C V |every edge of E is incident to at least one
vertex of S}.

Cost: For every S € M(G), cost(S,G) =|S|.

Goal: minimum.

VERTEX COVER PROBLEM.

The vertex cover problem is to decide, for a given graph G and a positive
integer k, whether G contains a vertex cover of cardinality k. Remember that
a vertex cover of G = (V, E) is any set S of vertices of G such that each edge
from E is incident to at least one vertex in S.

Formally, the vertex cover problem (VCP) is the decision problem
(VCP, {0,1,#}), where

VCP = {u#w € {0,1,#}* | u € {0,1}* and w represents a graph that

contains a vertex cover of size Number(u)}.

2023/11/13 42

OT

m SIETEM AR AT E D2AH E B BALRFM LRI (K
REEMHEXNARA, tWAREEHM PN é’dliﬂ’]llﬂnﬁﬂ’]ﬂ}* hR
), WRERSGR, BRI EPE’J??&EJL‘HH” B &

2023/11/13 43

	3-9 问题的形式化描述
	你理解布尔函数的这些不同“表示”了吗？
	对于同一个对象，我们为什么需要不同的“表示”？
	算法问题的表示
	你理解这些概念了吗？
	你理解这些概念了吗？
	你理解图的这种表示了吗？它合理吗？
	你理解这些概念了吗？
	你理解这段话了吗？
	你理解这段话了吗？
	你理解这些概念了吗？
	你理解这些概念了吗？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这段话了吗？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这个判定问题了吗？这里的L是什么？
	你理解这些概念了吗？
	你理解这段话了吗？
	你理解这些概念了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你理解这个优化问题了吗？
	你能比较一个优化问题和它对应的判定问题的“难度”吗？
	OT

