
Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings

Yuxuan Shi

National Key Laboratory for Novel

Software Technology,

Nanjing University, China

Bosch Center for AI,

Robert Bosch GmbH, Germany

yxshi@smail.nju.edu.cn

Gong Cheng

National Key Laboratory for Novel

Software Technology,

Nanjing University, China

gcheng@nju.edu.cn

Evgeny Kharlamov

Bosch Center for AI,

Robert Bosch GmbH, Germany

evgeny.kharlamov@de.bosch.com

Department of Informatics,

University of Oslo, Norway

evgeny.kharlamov@ifi.uio.no

ABSTRACT
Keyword search is a prominent approach to querying Web data. For

graph-structured data, a widely accepted semantics for keywords

is based on group Steiner trees. For this NP-hard problem, existing

algorithms with provable quality guarantees have prohibitive run

time on large graphs. In this paper, we propose practical approxi-

mation algorithms with a guaranteed quality of computed answers

and very low run time. Our algorithms rely on Hub Labeling (HL),

a structure that labels each vertex in a graph with a list of vertices

reachable from it, which we use to compute distances and shortest

paths. We devise two HLs: a conventional static HL that uses a

new heuristic to improve pruned landmark labeling, and a novel

dynamic HL that inverts and aggregates query-relevant static la-

bels to more efficiently process vertex sets. Our approach allows to

compute a reasonably good approximation of answers to keyword

queries in milliseconds on million-scale knowledge graphs.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; Approxi-
mation algorithms; •Theory of computation→ Shortest paths.
KEYWORDS
knowledge graph, keyword search, group Steiner tree, hub labeling

ACM Reference Format:
Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov. 2020. Keyword Search

over Knowledge Graphs via Static and Dynamic Hub Labelings. In Proceed-
ings of TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380110

1 INTRODUCTION
Keyword search allows users to query Web data without a prior

knowledge of specialized query languages. A keyword query is a

set of words posed by a user that should be matched to the data.

Relevant data fragments are then extracted and presented to the

user in an appropriate format as answers. The exact way of match-

ing keywords, extracting data, and composing answers depends on

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380110

the format of the underlying data and the semantics of query an-

swering. Keyword search has been extensively studied for various

databases [51] and has recently attracted renewed attention in the

context of knowledge graphs (KGs) [12, 21, 35, 44].
Problem. In a nutshell, a common type of semantics for key-

word queries over graph data is to match each keyword to a vertex

of the graph and to extract trees of minimum weight that contain

these vertices, known as minimum-weight Steiner trees [49]. More

formally, given an edge-weighted data graph and a keyword query,

one firstly finds for each keyword the matching set of vertices in

the graph, i.e., all the vertices where the keyword can be matched,

and then finds a tree in the graph that spans the matching sets,

i.e., contains at least one vertex from each matching set, and that

minimizes the total edge weight. This optimization problem is the

well-known group Steiner tree (GST) problem [26]. Note that key-

words are also allowed to be matched to edges. Edge matches can

be straightforwardly transformed into vertex matches via graph

subdivision, and be processed as vertex matches.

Challenge. Computing answers to keyword queries under the

GST semantics is computationally demanding. The GST problem is

known to be NP-hard. Moreover, existing approximation algorithms

that have provable quality guarantees also have prohibitively high

run time for large graphs. As shown in [13], existing methods [9,

15, 27] take thousands of seconds to answer a keyword query on

the graph version of IMDb which is not that large—containing

1.6M vertices and 6.1M edges.

This poses a significant challenge for developing efficient key-

word search systems over KGs which we see in this paper as collec-

tions of interconnected and annotated entities. KGs have become

increasingly popular in recent years, and they can be huge. The

well-known DBpedia KG [36] contains millions of entities. Google’s

KG has one billion entities [41]. KGs in industry are also of a huge

scale [6, 24, 29–33]. Existing GST-based algorithms for keyword

search will not scale for them.

Our Approach. To meet the challenge, we propose practical

algorithms that compute approximations of answers to keyword

queries under the GST semantics. Our algorithms feature both

the quality of approximation and high efficiency. They compute
approximations with guaranteed quality in milliseconds on millions
of vertices. The algorithms rely on Hub Labeling (HL) [1], a structure
that labels each vertex in a graph with a list of reachable vertices,

for efficient computation of distances and shortest paths. We devise

two new HLs to realize the significant improvement in efficiency.

https://doi.org/10.1145/3366423.3380110
https://doi.org/10.1145/3366423.3380110

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov

A

D
C

E

F
B

{k3, k4} {k3}

{k1}
{k1}

{k2}
0.6

0.3

0.8

0.4 1

2

0.1 A

C

E

B

A

C

E

B

A

C

E

B

Q = {k1, k2, k3}

K1 = {B, F}
UB = {B, E, C}
UF = {F, E, C}
x = B

TB TE TC

(umin = E) A

C

E

B

TE

Answer:

L(A) A (dist=0, pred=A)

L(B) A (dist=0.6, pred=A), B (dist=0, pred=B)

L(C) A (dist=0.4, pred=A), C (dist=0, pred=C)

L(D) A (dist=1, pred=A), D (dist=0, pred=D)

L(E) A (dist=0.3, pred=A), B (dist=0.8, pred=B), E (dist=0, pred=E)

L(F) A (dist=0.7, pred=B), B (dist=0.1, pred=B), F (dist=0, pred=F)

{}

Figure 1: A running example of KeyKG.

Our first algorithm KeyKG selects a matching vertex for each

keyword and finds a tree that spans these vertices. For д keywords,

KeyKG is a (д−1)-approximation algorithm, i.e., the total edgeweight

of a computed GST is at most (д − 1) times the minimum weight.

This approximation ratio is acceptable because, on the one hand,

д is usually a very small integer in practice and, on the other hand,

the problem has O(lnд) inapproximability [26], i.e., there is no

polynomial-time algorithm that can approximate the problem with

any ratio in O(lnд). Our approximation ratio is obtained thanks to

the selection of matching vertices that are close to each other and

the constitution of trees with shortest paths. For efficient online

computation of distances and shortest paths, we devise a HL that

improves the existing pruned landmark labeling [3] with a new

heuristic based on betweenness centrality. This HL by convention

is static as it is offline constructed and invariant to queries. On

large KGs, KeyKG with a static HL performs at least an order of

magnitude faster than the state of the art [27, 38], and computes

reasonably good answers with comparable quality.

Our second algorithm KeyKG+ extends KeyKG by using a novel

type of HL. This proposed HL is dynamic as it is online constructed

when processing a concrete query, by inverting and aggregating

certain query-relevant static labels. It helps to reduce repeated oper-

ations in KeyKG that are performed in the computation of distances

on sets of vertices with a conventional static HL. Despite the extra

time for online construction, using dynamic HLs brings about sev-

eral orders of magnitude improvement in overall efficiency. In par-

ticular, on DBpedia, KeyKG+ computes the same answers as KeyKG
only in milliseconds, making KeyKG+ a very practical solution.

Contributions.We summarize our contributions as follows.

• For keyword search over KGs under the GST semantics,

we design approximation algorithms with provable quality

guarantees. These practical algorithms compute reasonably

good answers on million-scale KGs only in milliseconds.

• To support efficient online computation of distances and

shortest paths in our algorithms, we propose a novel query-

relevant dynamic HL which achieves significant improve-

ment in overall performance. We also devise a new static HL

using an effective heuristic that outperforms existing HLs.

The remaining sections are organized as follows. Section 2 for-

mulates the problem. Section 3 introduces KeyKG and our static HL.

Section 4 describes KeyKG+ and our dynamic HL. Experiments are

presented in Section 5. We discuss related work in Section 6, and

conclude the paper in Section 7.

2 PROBLEM FORMULATION
We define necessary terms and then formulate the problem to solve.

Knowledge Graph. A knowledge graph (KG) represents a col-

lection of interconnected and annotated entities. For conciseness,

we only formulate the essential part of a KG. Formally, it is a simple

undirected graph G = ⟨V ,E⟩ where V is a finite set of n vertices

representing entities (i.e., |V | = n) and E ⊆ V × V is a finite set

of unordered pairs of vertices as undirected edges representing

relations between entities. Self-loops, parallel edges, and edge di-

rections are ignored since they are not essential to our approach.

We assume a weighting function wt : E 7→ R0+ that maps edges

into non-negative real numbers. Small weights indicate great im-

portance. The exact weighting function is not our concern. As our

running example in this paper, the left of Fig. 1 shows a KG where

six vertices are connected by seven edges with weights. For con-

ciseness, vertices and edges are denoted by symbols, but in real

KGs they are annotated with meaningful text.

Graph Terminology. The degree of a vertex is its number of

incident edges. We define a path in a graph in a standard way. For

path p, its length is the sum of the weights of all the edges in p,
denoted by len(p). The distance between two vertices u,v ∈ V ,
denoted by dist(u,v), is the length of a shortest path connecting u
and v in G, or∞ if no such path exists.

KeywordMapping. LetK be the set of all keywords.We assume

a retrieval function hits : K 7→ 2
V
that maps keywords to subsets

of vertices from V . The exact retrieval function depends on how

KGs are implemented and is outside the scope of our research. As an

example, in Fig. 1 each vertex is associated with a set of keywords

that can be mapped from, based on which we define

hits(k1) = {B, F }, hits(k2) = {E}, hits(k3) = {C,D}, hits(k4) = {C} .

We map keywords to vertices but our approach can be straightfor-

wardly extended to support edge matches via graph subdivision.

The subdivision of an edge (u,v) yields a new vertexw and replaces

the edge (u,v) by two edges (u,w) and (w,v). Edge matches are

then transformed into vertex matches. To simplify the presentation

in the paper, we omit edge matches in our problem formulation.

Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings WWW ’20, April 20–24, 2020, Taipei, Taiwan

Keyword Query. A keyword query Q ⊆ K is a finite set of

keywords. Given д keywords Q = {k1, . . . ,kд}, for the ease of

notation we write hits(ki) as Ki for 1 ≤ i ≤ д and call them

keyword vertices. Given G = ⟨V ,E⟩, an answer to Q over G is a

group Steiner tree (GST) denoted by T = ⟨VT ,ET ⟩ such that

(1) VT ⊆ V , ET ⊆ E, and T is a tree,

(2) VT contains at least one vertex from each Ki for 1 ≤ i ≤ д,
i.e., VT ∩ Ki , ∅, and

(3) the weight of T , defined as WT(T) =
∑
e ∈ET wt(e), is the

minimum among all trees satisfying conditions (1) and (2).

Conditions (1) and (2) define a GST. Condition (3) requires it to have

the minimum weight. Computing a minimum-weight GST is NP-

hard and hasO(lnд) inapproximability [26]. We aim to approximate

a minimum-weight GST as an answer to a keyword query over a

KG. For example, consider a keyword query Q = {k1,k2,k3} in
Fig. 1 where K1 = {B, F }, K2 = {E}, and K3 = {C,D}. The tree TE
shown in the top-right corner of the figure is a possible answer

since it contains B ∈ K1, E ∈ K2, and C ∈ K3.

3 ALGORITHM KeyKGWITH STATIC HL
As the problem is NP-hard, in this section we present our first

approximation algorithm referred to as KeyKG. We describe KeyKG
and analyze its approximation ratio in Section 3.1. The algorithm

relies on two subroutines: getD for computing distances, and getSP
for computing shortest paths. To support efficient computation

of getD and getSP, in Section 3.2 we present a new implementation

of Hub Labeling, which is an offline constructed index structure.

Finally, in Section 3.3 we analyze the run time of KeyKG.

3.1 Algorithm KeyKG
KeyKG is presented inAlgorithm1. It finds a GST in a KG that spans

д sets of keyword vertices. In a nutshell, KeyKG first greedily selects
a set of keyword vertices that are close to each other, denoted byUx ,
which contains one vertex from each Ki for 1 ≤ i ≤ д (lines 1–8).

Then KeyKG greedily finds a GST to span Ux , denoted by Tumin
,

which is iteratively expanded with shortest paths (lines 9–18).

Specifically, for each vertex v1 ∈ K1 (line 1), KeyKG finds a ver-
texvi in each otherKi with the minimum distance fromv1 (lines 2–
4). Let Uv1

be the set of all such vertices vi (including v1), and
let Wv1

be the sum of their distances from v1 (lines 5–6). Each

vertex v1 ∈ K1 has a correspondingWv1
. Let x ∈ K1 be a vertex

corresponding to the smallest value ofWv1
(line 8). As a result,

Ux contains one vertex from each Ki for 1 ≤ i ≤ д, and these

vertices are selected because they are relatively close to each other.
Therefore, a GST that spans these vertices may have a small weight.

The remainder of the algorithm constructs a GST Tu starting

from each vertex u ∈ Ux , and selects one that has the minimum

weight among these |Ux | GSTs. Specifically, each Tu is initialized

with a single vertexu (lines 9–10). Then iteratively untilTu spansUx
(line 11), a vertex smin inside Tu and a vertex tmin ∈ Ux outside Tu
are found such that they have the smallest distance (line 12). A

shortest path p between smin and tmin is found and added to Tu
(lines 13–14). This greedy expansion with shortest pathsmay produce

a GST having a small weight. Each vertex u ∈ Ux has a correspond-

ing Tu . Let umin ∈ Ux be a vertex corresponding to Tu that has the

minimum weight (line 17). Finally, KeyKG returns Tumin
(line 18).

Input: a KG G = ⟨V ,E⟩, д sets of keyword vertices

K1, . . . ,Kд
Output: a GST in G that spans K1, . . . ,Kд

1 foreach v1 ∈ K1 do
2 for i ← 2 to д do
3 vi ← argmin

v ∈Ki
getD(v1,v);

4 end
5 Uv1

← {vi : 1 ≤ i ≤ д};

6 Wv1
←

∑д
i=2 dist(v1,vi);

7 end
8 x ← argmin

v1∈K1

Wv1
;

9 foreach u ∈ Ux do
10 Tu = ⟨VTu ,ETu ⟩ ← ⟨{u}, ∅⟩;

11 whileUx ⊈ VTu do
12 ⟨smin, tmin⟩ ← argmin

⟨s,t ⟩∈VTu ×(Ux \VTu)
getD(s, t);

13 p ← getSP(smin, tmin);

14 Add the vertices and edges of p to Tu ;

15 end
16 end
17 umin ← argmin

u ∈Ux
WT(Tu);

18 return Tumin ;

Algorithm 1: KeyKG

KeyKG relies on getD for computing the distance between two

vertices (line 3 and line 12), and getSP for computing a shortest path

between two vertices (line 13), which we will detail in Section 3.2.

Running Example. In Fig. 1, given Q = {k1,k2,k3}, assume

K1 = {B, F }, K2 = {E}, and K3 = {C,D}. For B ∈ K1, we select E ∈
K2 and C ∈ K3, producingUB = {B,E,C}. For F ∈ K1, we produce

UF = {F ,E,C}. BecauseWB = 1.8 andWF = 2, we haveWB <WF
and hence x = B. Then for B,E,C ∈ UB , we generate TB ,TE ,TC ,
respectively. They satisfy WT(TE) = WT(TC) < WT(TB). Therefore,
we have umin = E (or umin = C), and finally TE (or TC) is returned.

Analysis of Approximation Ratio. For a keyword query con-

taining д keywords, Theorem 3.1 shows that KeyKG is a (д − 1)-

approximation algorithm, i.e., the weight of a computed GST is at

most (д − 1) times the minimum weight. This provable approxima-

tion ratio of KeyKG is indeed acceptable since, on the one hand, д is

often very small in practice and, on the other hand, the problem

cannot be approximated with any ratio in O(lnд) [26].

Theorem 3.1. KeyKG is a (д − 1)-approximation algorithm.

Proof. Let Topt = ⟨Vopt,Eopt⟩ be an optimum solution, i.e., a

minimum-weight GST.We show that the following inequality holds:

WT(Tumin
) ≤ (д − 1) · WT(Topt) . (1)

Observe that for 1 ≤ i ≤ д, there is oi ∈ Vopt such that oi ∈ Ki .
For 2 ≤ i ≤ д, let p1,i be the path between o1 and oi in Topt. It is
trivial that len(p1,i) ≤ WT(Topt), and thus

д∑
i=2

dist(o1,oi) ≤

д∑
i=2

len(p1,i) ≤ (д − 1) · WT(Topt) . (2)

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov

Now consider the construction of Tu (lines 10–15) for u = x .
Let P be the set of all shortest paths added to Tx (line 14). We have

WT(Tumin
) ≤ WT(Tx) ≤

∑
p∈P

len(p) . (3)

For each p ∈ P we know len(p) = dist(smin, tmin) (line 13), so

len(p) ≤ dist(x , tmin) according to the definition of ⟨smin, tmin⟩

(line 12). This leads to the first inequality in the following:∑
p∈P

len(p) ≤
∑

v ∈Ux \{x }

dist(x ,v) =Wx ≤Wo1 , (4)

where the last inequality is by the definition of x (line 8). According

to the definitions ofW (line 6) andU (line 5 and line 3), we obtain

Wo1 =
∑

v ∈Uo
1
\{o1 }

dist(o1,v) ≤

д∑
i=2

dist(o1,oi) . (5)

Finally, combining Eq. (3), Eq. (4), Eq. (5), and Eq. (2) in succession,

we obtain Eq. (1) and complete the proof. □

3.2 Static HL
KeyKG relies on getD for computing the distance between two ver-

tices and getSP for computing a shortest path between two vertices.

On a large KG, on the one hand, a straightforward online imple-

mentation of these subroutines (e.g., using the Dijkstra algorithm)

has prohibitively high run time. On the other hand, offline material-

izing distances and shortest paths between all pairs of vertices has

prohibitively large space consumption. To find a practical trade-off

between time and space, we consider Hub Labeling (HL) [1], an

offline constructed index structure that is dedicated to this purpose.

We call it static HL as it is offline constructed and invariant to

queries, in contrast with dynamic HL that is query-relevant and

online constructed which we will introduce in Section 4.

Belowwe review the concept of static HL and theway it is used to

implement getD. Then we describe a new method for constructing

a static HL where it is extended to also support getSP.
Basic Concepts. A static HL is an offline constructed index

structure for graphs [1]. For G = ⟨V ,E⟩, a static HL can be viewed

as a function L : V 7→ 2
V
that maps vertices into sets of vertices

(called hubs) and satisfies the following condition: ∀u,v ∈ V that

are connected in G, ∃h ∈ L(u) ∩ L(v) such that h is on a shortest

path between u and v . For v ∈ V , L(v) is called the label of v . In
the standard index structure of L, each L(v) is a list where hubs are
sorted by their identifiers. For each hub h ∈ L(v), its precomputed

distance from v , i.e., dist(v,h), is also stored. For example, a static

HL for the KG in Fig. 1 is shown in the bottom-right corner. At this

moment please ignore pred in the figure.

With materialized L, for u,v ∈ V , getD(u,v) is implemented

without accessing the original graph:

getD(u,v) =

min

h∈L(u)∩L(v)
dist(u,h) + dist(v,h) L(u) ∩ L(v) , ∅ ,

∞ L(u) ∩ L(v) = ∅ ,
(6)

where dist(u,h) and dist(v,h) are stored with h in L(u) and L(v),
respectively. For example, to compute getD(E, F) with the static HL

in Fig. 1, because L(E) ∩ L(F) = {A,B}, we obtain

getD(E, F) = min{dist(E,A) + dist(F ,A), dist(E,B) + dist(F ,B)}

= min{0.3 + 0.7, 0.8 + 0.1} = 0.9 .

Input: a KG G = ⟨V ,E⟩
Output: a static HL for G

1 L0(v) ← ∅ for all v ∈ V ;

2 Sort V in descending order of betweenness centrality;

3 for i ← 1 to n do // n = |V |
4 Li (v) ← Li−1(v) for all v ∈ V ;

5 visited[v] ← 0 for all v ∈ V ;

6 d[vi] ← 0 and d[v] ← ∞ for all v ∈ V \ {vi };

7 PQ ← a min-priority queue of vertices initialized

with vi ;

// The priority of vertex v is set to d[v].

8 while PQ is not empty do
9 u ← PQ .pull();

10 visited[u] ← 1;

11 if d[u] < getD(vi ,u) then // using Li−1 for

getD
12 Li (u) ← Li−1(u) ∪ {vi }; // dist(u,vi) = d[u]

13 foreachw ∈ NBR(u) s.t. visited[w] = 0 do
// NBR(u): neighbors of u

14 if d[u] + wt((u,w)) < d[w] then
15 d[w] ← d[u] + wt((u,w));

16 pred(w,vi) ← u; // for Li (w)

17 end
18 if w < PQ then
19 PQ .insert(w);

20 end
21 end
22 end
23 end
24 end
25 return Ln ;

Algorithm 2: Construction of Static HL

However, the standard index structure of L cannot support effi-

cient implementation of getSP.
Improvement in Construction. According to Eq. (6), the on-

line computation of getD will be faster if vertices have smaller

materialized labels. Unfortunately, the problem of minimizing the

average size of a label is NP-hard and has logarithmic inapproxima-

bility [5]. There have been many and various heuristic methods for

constructing reasonably small labels for a given graph [45]. Among

others, the pruned landmark labeling (PLL) [3] is a popular imple-

mentation, which performs the Dijkstra algorithm and effectively

prunes searches to reduce labels. Below we improve PLL to obtain

smaller labels and hence compute getD faster.

As shown in Algorithm 2, we construct a static HL by improv-

ing and extending PLL. Recall that the standard version of PLL

basically performs the Dijkstra algorithm n times where n is the

number of vertices (lines 3–24), and it iteratively expands vertex

labels (line 4 and line 12). We use Li (v) to denote v’s label after
i iterations. In the i-th iteration, the Dijkstra algorithm starts from

a distinct vertex vi ∈ V (line 7), visits other vertices and calculates

their distances from vi which are stored in d (lines 14–15), and

Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings WWW ’20, April 20–24, 2020, Taipei, Taiwan

Input: a KG G = ⟨V ,E⟩ and two vertices u,v ∈ V
Output: a shortest path between u and v in G

1 hmin ← argmin

h∈L(u)∩L(v)
dist(u,h) + dist(v,h);

2 p ← the path consisting of a single vertex u;

3 y ← u;

4 while y , hmin do
5 Find hmin in L(y);

6 Add the edge between y and pred(y,hmin) to p;

7 y ← pred(y,hmin);

8 end
9 y ← v ;

10 while y , hmin do
11 Find hmin in L(y);

12 Add the edge between y and pred(y,hmin) to p;

13 y ← pred(y,hmin);

14 end
15 return p;

Algorithm 3: Implementation of getSP

adds vi to their labels (line 12). Some vertex u may not be visited

and hence its label can be reduced. Such a prune happens when u’s
distance from vi can been computed from constructed labels Li−1,
i.e., the condition is false in line 11.

Whereas the correctness of the pruning is provable [3], the goal

of our improvement is to prune more. We want labels constructed in

earlier iterations to support the computation of distances between

more pairs of vertices, so that pruning will be more often in later

iterations. Intuitively, this can be achieved by choosing vertices
through which many shortest paths pass as the starting vertex of

the Dijkstra algorithm in early iterations. To this end, the original

implementation of PLL heuristically sorts starting vertices in de-

scending order of degree because high-degree vertices are likely to

appear in shortest paths between many pairs of vertices. We do it

differently; we sort in descending order of betweenness centrality

(line 2). The betweenness centrality of a vertex v is defined as

bc(v) =
∑

s,t ∈V \{v }

σst (v)

σst
, (7)

where σst is the number of shortest paths between s and t , and
σst (v) is the number of the above paths that pass through v . Com-

puting exact betweenness centrality, e.g., using [10], has prohibi-

tively high run time for large graphs. Thus, in our implementation

we use a source sampling based approximation algorithm and select

the highest-degree vertices as pivots. We refer the reader to [4] for

further details of this algorithm as well as the definition of pivot.

Extension of Index Structure. To support efficient implemen-

tation of getSP, we need to extend the index structure of L. In Al-
gorithm 2, for each hub vi ∈ L(w), we store not only dist(w,vi)
but alsow ’s predecessor in the search tree rooted at vi , denoted by

pred(w,vi) (line 16). Storing pred does not increase the asymptotic

space complexity of our static HL.

With such extended labels, getSP is implemented inAlgorithm3.
To obtain a shortest path p between u and v , we firstly find their

common hub hmin on p (line 1), and then repeatedly follow prede-

cessors to construct the u-hmin part of p (lines 2–8) and the v-hmin

part of p (lines 9–14). For example, to compute getSP(D, F) with
the extended HL in Fig. 1, we retrieve hmin = A because A is the

only common hub in L(D) and L(F). The D-A part of p, i.e., the
single edge (D,A), is constructed by following pred(D,A) = A
which is stored with A in L(D). The F -A part of p, i.e., the path con-

sisting of two edges (F ,B) and (B,A), is constructed by following

pred(F ,A) = B which is stored with A in L(F) and then following

pred(B,A) = A which is stored with A in L(B). Finally, the two

parts are concatenated into p = D-A-B-F .

3.3 Analysis of Run Time
Now we analyze the run time of KeyKG in Algorithm 1. Let tgetD
and tgetSP be the run time of getD and getSP, respectively, which
we will detail later. Recall that д is the number of keywords, and n is

the number of vertices ofG . Because |Ki | ≤ n for 1 ≤ i ≤ д, the run
time of lines 1–8 isO(n2дtgetD). For lines 9–18, our implementation

uses the following trick. For each vertex in Ux \VTu , we store its
smallest distance from the vertices in Tu . When we add a vertex

of p to Tu (line 14), we update its stored distance to each vertex

inUx \VTu by calling getD. We use these stored distances to find

⟨smin, tmin⟩ in line 12, without calling getD there. This trick reduces
the total number of calls to getD fromO(nд3) toO(nд2), although an
additional O(д3) time is needed for finding the minimum distance

among stored ones. The total run time of KeyKG is thus

O(n2дtgetD + nд
2tgetD + д

3 + д2tgetSP) . (8)

To analyze tgetD, recall Eq. (6) and observe that by performing

a mergesort-like operation on two sorted lists of hubs, getD(u,v)
is computed in O(|L(u)| + |L(v)|) time and thus tgetD is O(n) since
|L(·)| ≤ n. This is much faster than naively using the Dijkstra algo-

rithm. Besides, since |L(·)| ≪ n in practice, the total size of L is close
to O(n) and it is much smaller than that of naively materializing

distances between all pairs of vertices. Therefore, static HL provides

a good trade-off between time and space.

To analyze tgetSP for Algorithm 3, observe that by a mergesort-

like operation, hmin is retrieved in O(n) time (line 1). Then, by

performing binary search of a label, hmin is located inO(logn) time

(line 5 and line 11). The while loops will run O(n) times. Thus,

tgetSP is O(n logn).
Nowwe can conclude the analysis. In Eq. (8), by substituting tgetD

and tgetSP with O(n) and O(n logn), respectively, we obtain the

following run time of KeyKG:

O(n3д + n2д2 + д3 + д2n logn) . (9)

However, this worst-case complexity will rarely be met in practice

because we usually have |Ki | ≪ n, |VTu | ≪ n, and |L(·)| ≪ n.
Furthermore, д is also often small, so the actual run time of KeyKG
is very low, as we will see in the experiments.

4 ALGORITHM KeyKG+WITH DYNAMIC HL
In this section we present our second approximation algorithm

KeyKG+. It extends KeyKG with a novel online constructed HL to re-

alizemore efficient computation of distances on sets of vertices. This

dynamic HL is described in Section 4.1. Based on that, KeyKG+ is
given in Section 4.2. We analyze its run time in Section 4.3.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov

Table 1: A dynamic HL (M) for our running example, where
the number in the subscript ofMi, j represents dist(Mi, j ,hj).

A B C D E F

K2 E
(0.3)

E
(0.8)

null null E
(0)

null

K3 C
(0.4)

null C
(0)

D
(0)

null null

4.1 Dynamic HL
Recall that inAlgorithm 1, for eachKi (2 ≤ i ≤ д), the static labels
of all the vertices in Ki will be accessedO(дn) times by getD (line 3)
in the same way: by performing a mergesort-like operation to find a

hub in the static label of some vertexvi ∈ Ki such that the hub also

appears in L(v1) and it isvi that minimizes the distance betweenv1
and Ki . We optimize the performance of these repeated operations

by constructing an inverted index structure called a dynamic HL,
which aggregates the static labels of the vertices in Ki . Such dy-

namic HLs are query-relevant and are thus online constructed.

Specifically, a dynamic HL is a (д − 1) × n matrixM . Rows corre-

spond to sets of keyword vertices K2, . . . ,Kд , and columns corre-

spond to hub vertices. The (i − 1)-th row of M , denoted by Mi−1,

inverts and then aggregates the static labels of the vertices in Ki .
The j-th element of Mi−1, denoted by Mi−1, j , is not null if vertex

hj ∈ V is a hub in the static label of at least one vertex inKi . Among

these vertices in Ki whose static labels contain hj ,Mi−1, j denotes

the one that minimizes the distance to hj :

Mi−1, j =

argmin

u ∈Ki s.t. hj ∈L(u)
dist(u,hj) hj ∈

⋃
u ∈Ki L(u) ,

null hj <
⋃
u ∈Ki L(u) .

(10)

If hj is not a hub in the static label of any vertex inKi , we letMi−1, j
be null. We use a two-dimensional array to store M , thereby al-

lowing random access in constant time. For eachMi−1, j that is not

null, its precomputed distance from hj is also stored.Mi−1 can be

constructed from Ki and L without accessing the original graph.

As we will see in Section 4.2, in the computation of vi , Mi−1 can

replace the static labels of the vertices in Ki , and show improved

efficiency thanks to its compactness and random access capability.

For example, Table 1 presentsM for our running example. Take

i = 3, for instance. Recall that K3 = {C,D} and in Fig. 1 we have

L(C) ∪ L(D) = {A,C} ∪ {A,D} = {A,C,D} . (11)

Therefore, in the second row only these entries are not null. As an

example we show how M2,A = C is obtained. Here hj = A, and
we observe A ∈ L(C) and A ∈ L(D). We choose C instead of D
as M2,A because dist(C,A) < dist(D,A). Note that dist(C,A)
and dist(D,A) are retrieved from the static HL in Fig. 1. Finally,

we store dist(C,A) = 0.4 withM2,A in the dynamic HL.

4.2 Algorithm KeyKG+

KeyKG+ presented in Algorithm 4 is an extension of KeyKG. Dy-
namic HLs are constructed and used in two places to improve the

overall efficiency but they will not change the computed results.

In the first place, M is constructed for K2, . . . ,Kд (lines 1–3).

ThenMi−1 is used to find vi (line 6) as follows. For each hub hj ∈
L(v1), we retrieve dist(v1,hj) from L(v1) and retrieveMi−1, j with

Input: a KG G = ⟨V ,E⟩, д sets of keyword vertices

K1, . . . ,Kд
Output: a GST in G that spans K1, . . . ,Kд

1 for i ← 2 to д do
2 ConstructMi−1 for Ki ;

3 end
4 foreach v1 ∈ K1 do
5 for i ← 2 to д do
6 vi =

argmin

Mi−1, j s.t. hj ∈L(v1)

and Mi−1, j,null

dist(v1,hj) + dist(Mi−1, j ,hj);

7 end
8 Uv1

← {vi : 1 ≤ i ≤ д};

9 Wv1
←

∑д
i=2 dist(v1,vi);

10 end
11 x ← argmin

v1∈K1

Wv1
;

12 foreach u ∈ Ux do
13 Tu = ⟨VTu ,ETu ⟩ ← ⟨{u}, ∅⟩;

14 ConstructM ′u for VTu ;

15 whileUx ⊈ VTu do
16 foreach ti ∈ (Ux \VTu) do
17 si =

argmin

M ′u, j s.t. hj ∈L(ti)
and M ′u, j,null

dist(ti ,hj) + dist(M
′
u, j ,hj);

18 end
19 ⟨smin, tmin⟩ ← argmin

⟨si ,ti ⟩
dist(si , ti);

20 p ← getSP(smin, tmin);

21 Add the vertices and edges of p to Tu ;

22 UpdateM ′u ;

23 end
24 end
25 umin ← argmin

u ∈Ux
WT(Tu);

26 return Tumin ;

Algorithm 4: KeyKG+

dist(Mi−1, j ,hj) fromMi−1. IfMi−1, j is not null, we calculate

dist(v1,hj) + dist(Mi−1, j ,hj) , (12)

which represents the smallest distance between v1 and the vertices

in Ki via a particular hj . Finally, vi is found over all hj ∈ L(v1):

vi = argmin

Mi−1, j s.t. hj ∈L(v1) and Mi−1, j,null
dist(v1,hj) + dist(Mi−1, j ,hj) . (13)

This computation in KeyKG+ (line 6) is equivalent to the computa-

tion of vi in KeyKG (line 3), but is more efficient.

Running Example. In Fig. 1, for B ∈ K1 as v1, given L(B) =
{A,B}, we select E ∈ K2 as v2 since M1,A = M1,B = E in Table 1;

select C ∈ K3 as v3 sinceM2,A = C ,M2,B = null. For F ∈ K1 as v1,
given L(F) = {A,B, F }, we select E ∈ K2 asv2 sinceM1,A = M1,B =

E,M1,F = null; select C ∈ K3 sinceM2,A = C ,M2,B = M2,F = null.

This selection in KeyKG+ is the same as that in KeyKG.

Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: KGs and keyword queries used in the experiments.

KG Keyword Query

|V | |E | Number д

MONDIAL 37,303 109,577 40 1–4

LinkedMDB 748,593 1,216,325 200 1–10

DBpedia 5,765,042 17,557,947 429 1–10

In the second place, we createM ′u forVTu (line 14) just as howwe

createMi−1 for Ki . As Tu expands in each iteration (line 21),M ′u is

updated with the static labels of the vertices added to Tu (line 22).

For each ti ∈ (Ux \VTu), M
′
u is used to find si ∈ VTu that has the

minimum distance from ti (lines 16–18), just as howMi−1 is used

to find vi . We find ⟨smin, tmin⟩ over all such ⟨si , ti ⟩ (line 19). This
computation of ⟨smin, tmin⟩ in KeyKG+ (lines 16–19) is equivalent
to that in KeyKG (line 12), but is more efficient.

Analysis ofApproximationRatio. KeyKG+ computes the same

result as KeyKG and hence is also a (д− 1)-approximation algorithm.

4.3 Analysis of Run Time
Compared with KeyKG in Algorithm 1 where the run time of

lines 1–4 is O(n3д), KeyKG+ in Algorithm 4 constructs Mi−1 in

O(n2) time and finds vi in O(n) time since the array-basedM sup-

ports O(1)-time random access, reducing the run time of this part

(lines 1–7) to O(n2д). Similarly, compared with KeyKG where the

run time of lines 9–12 isO(n2д2+д3), in KeyKG+ the run time of this

part (lines 12–19 and line 22) is O(n2д + nд3). It represents an im-

provement in practice because we usually have nд3 ≪ n2д and thus
O(n2д + nд3) is close to O(n2д) which is better than O(n2д2 + д3).

Besides, we reconsider the run time of getSP in KeyKG+ (line 20).
In Algorithm 3, first, we can reduce the O(n) time for retriev-

inghmin to zero because in KeyKG
+
,hmin has been identified (line 17)

and can be reused. Second, throughout the construction of Tu , the
total number of binary searches of static labels is not O(дn) but is
proportional to |ETu | ∈ O(n). Therefore, the total run time of getSP

is reduced from O(д2n logn) in KeyKG to O(дn logn) in KeyKG+.
To conclude, we obtain the following run time of KeyKG+:

O(n2д + n2д + nд3 + дn logn) , i.e., O(n2д + nд3) . (14)

Following our comment on the run time of KeyKG in Section 3.3,

this worst-case complexity will rarely be met in practice. The actual

run time of KeyKG+ is very low—several orders of magnitude lower

than that of KeyKG, as we will see in the experiments

5 EXPERIMENTS
The purpose of our experiments is to empirically investigate the

following research hypotheses (RH).

RH1 Our approach shows practicalitywith low run time on typical

KGs and outperforms the state of the art [27, 38], while it

computes reasonably good answers with comparable quality.

RH2 Using our proposed dynamic HL brings about significant

improvement in overall efficiency.

RH3 Our static HL has a smaller size than existing HLs [3, 14, 39],

and hence supports more efficient computation of distances

and shortest paths in our approach.

5.1 Experiment Setup
Our experiments were conducted on a 3.5GHz Intel Xeon with 32GB

memory for Java programs. Below we detail the setup.

KGs.We used three well-known KGs of different sizes:

• MONDIAL,
1
a small geography KG,

• LinkedMDB,
2
a medium-sized movie KG, and

• DBpedia,
3
a large encyclopedic KG.

Their sizes are presented in Table 2. KGs were stored in memory.

Keyword Queries. MONDIAL had been used in previous eval-

uation [13] and we reused the 40 keyword queries provided there.

For LinkedMDB we randomly sampled 200 questions from Wiki-

Movies [40] and transformed natural language questions into key-

word queries by removing stop words and punctuation marks. For

DBpedia we reused 429 keyword queries provided by DBpedia-

Entity v2 [22]. Table 2 shows the number and size of these queries.

Keyword Mapping. The three KGs are in the Resource De-

scription Framework (RDF) format. Our implementation of the

retrieval function hits maps keyword k to the vertices whose

human-readable names (rdfs:label) contain k . We found that

every keyword in our queries could be matched to at least one

vertex in the largest connected component of the KG. Therefore,

an answer under the GST semantics was guaranteed to exist.

Edge Weighting. There was no standard way of weighting

edges of a KG. We assigned to each edge a random real number

that was uniformly sampled from [0, 1000].

5.2 Baselines
Among existing methods for keyword search over KGs under the

GST or GST-like semantics, we compared our approach with two

representatives:

• PrunedDP++ [38] is a state-of-the-art exact algorithm for

the GST problem based on A* search.

• BANKS-II [27] is a state-of-the-art approximation algo-

rithm for the GST problem based on bidirectional search.

We re-implemented them by ourselves.

We did not compare with DPBF [15] and BANKS [9] because

PrunedDP++ and BANKS-II are improved versions of them, respec-

tively. We did not include BLINKS [23] because it could not scale to

KGs as large as LinkedMDB and DBpedia [13]. We did not consider

methods using semantics other than GST because they were not

directly comparable with our approach, e.g., STAR [28] based on

Steiner trees assuming an one-to-one retrieval function.

Recall that our static HL improves PLL [3] and sorts vertices by

their betweenness centrality. We compared it with three existing

HLs representing the state of the art:

• PLL refers to the original implementation of PLL [3] which

sorts vertices by their degrees.

• RXL [14] improves PLL by sorting vertices based on shortest-

path trees.

• SHP [39] is a recent method based on significant paths.

We obtained their implementation from the authors of [39].

1
www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.rdf

2
www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip

3
downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.tql.bz2

www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.rdf
www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip
downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_en.tql.bz2

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov

Table 3: Number of successful queries (SC), timeout excep-
tions (TO), and mean run time (ms) for a query.

MONDIAL LinkedMDB DBpedia

SC TO Time SC TO Time SC TO Time

PrunedDP++ 40 0 75.65 194 6 357,274.93 413 16 379,250.20

BANKS-II 40 0 418.85 200 0 27,168.20 429 0 647,041.79

KeyKG+ 40 0 0.06 200 0 0.16 429 0 82.84

KeyKG+-D 40 0 6.53 200 0 203.35 429 0 29,776.04

KeyKG 40 0 0.08 200 0 0.46 429 0 10,474.65

KeyKG-PLL 40 0 0.09 200 0 0.52 429 0 11,345.97

5.3 Implementation of Our Approach
Below we detail the configuration of our approach. We also imple-

mented several variants of our approach to thoroughly investigate

its key components. Our implementation has been open source.
4

Configuration of Our Approach. We implemented KeyKG+

and KeyKG where static HLs were stored in memory. In KeyKG+,
dynamic HLs were online constructed and stored in memory. In

the computation of approximate betweenness centrality for con-

structing our static HL, we selected 200 pivots [4]. The constructed

static HLs used affordable 37MB, 183MB, and 7,704MB memory for

MONDIAL, LinkedMDB, and DBpedia, respectively.

Variants ofOurApproach.We implemented KeyKG+-D, a vari-
ant of KeyKG+ where static HLs were stored on disk using a MySQL

database. It would help to show the performance of our approach

in a memory-efficient setting, e.g., on a low-resource machine.

We also implemented KeyKG-PLL, a variant of KeyKG where our

static HL was replaced by the original implementation of PLL. It

would help to evaluate the effectiveness of our improvement with

the betweenness centrality based heuristic.

We implemented two variants of our static HL using 10 pivots

and 100 pivots, referred to as SHL-10 and SHL-100, respectively.
Accordingly, the default version was referred to as SHL-200. In-
creasing the number of pivots could improve the accuracy of ap-

proximating betweenness centrality with increased run time. These

variants would help to observe the influence of this parameter to

our static HL.

5.4 Evaluation Metrics
For keyword search over KGs, our approach and the two baseline

methods are all under the GST semantics. Their common goal is to

compute or approximate a minimum-weight GST as fast as possible.

Therefore, following the standard way of evaluating an optimiza-

tion algorithm, we measured the quality of approximation and the

run time. For quality assessment, we calculated the approximation

ratio of a computed GST by dividing its total edge weight by that

of a minimum-weight GST. We did not use IR metrics such as pre-

cision/recall/F1 to evaluate keyword search, because the results

would be dependent on the concrete weighting scheme for edges,

which is outside the scope of our research in this work.

For comparing static HLs, we measured the average size of a
vertex label, i.e., the mean number of hubs in a label. Small labels

would lead to fast computation of distances and shortest paths

according to Eq. (6) and Algorithm 3, respectively.

4
github.com/nju-websoft/KeyKG

������
���

	������

���
+

����

���

���

��
�

��
��

��

(a) MONDIAL

���
���

	��
�

��
�

����

���
�

+

����
���
���
���
���

(b) LinkedMDB

���
���

	��
�

��
�

����

���
�

+
����
���
���
���
���

(c) DBpedia

Figure 2: Distribution of run time for all the queries.

��%�

���

��	

��
�
��
��

 �

��"�������
�������
��$��+

� � 	

g

���
���
��

���
���

��

��
#�
���

!��

(a) MONDIAL

����
���
���
���
��

����������
�������
�����+

� � � � � 	
 � � ��
g

���
���
���
��	
���

(b) LinkedMDB

����
���
���
���
��

����������
�������
�����+

� � � � � 	
 � � ��
g

���
���
���
��	
���

(c) DBpedia

Figure 3:Mean run time and approximation ratio for a query,
with a varying number of query keywords (i.e., д).

5.5 Results and Analysis
Below we report experiment results and investigate each of the

three research hypotheses.

5.5.1 Investigation of RH1. For RH1, to show the effectiveness and

efficiency of our approach, we compared KeyKG+ with PrunedDP++

and BANKS-II. Table 3 summarizes the mean run time of each algo-

rithm for a query. Timeout (>1h)was observed only on PrunedDP++.

Besides, this algorithm occasionally ran out of memory (>32GB).

We configured it to return the best GST it had found till timeout or

out of memory.

As shown in Table 3, on the small MONDIAL KG, all the three

algorithms answered a query in less than 1s. However, on the

larger LinkedMDB and DBpedia KGs, PrunedDP++ and BANKS-II

unsatisfactorily spent dozens to hundreds of seconds. By contrast,

KeyKG+ used less than 1ms on LinkedMDB and less than 100ms on

DBpedia, being 3 orders of magnitude faster than the baselines.

We visualize the distribution of run time for all the queries as box

plots in Fig. 2. KeyKG+ never exceeded 1s for any query. Its worst-

case performance was at least 1 order of magnitude faster than the

best-case performance of the baselines. PrunedDP++ showed many

outliers due to its exponential run time.

github.com/nju-websoft/KeyKG

Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings WWW ’20, April 20–24, 2020, Taipei, Taiwan

�

�
�	�

�	
���
�	
����

�	
����
��

��

��

��

�
��

��
��

��
���

��
�

����

���

��
�

��
��

�

(a) MONDIAL

�		��
	��

�	
���
�	

����
�	

����

�

�

��
��
��
��
���
��
�

���

���

���

��
�
��
��
�

(b) LinkedMDB

�

�
�	�

�	
���
�	
����

�	
����
��

��

��

��

�
��

��
��

��
���

��
�

���

���

��
�

��
��

�

(c) DBpedia

Figure 4:Mean number of hubs in the label of a vertex (bars);
run time for constructing a static HL (points).

Run time is related to the number of keywords in a query (i.e., д).
The mean run time for a query under different values of д is shown

in Fig. 3 (top). Generally, more time was spent when д grew. The

run time of KeyKG+ increased slowly, showing its good scalability

in terms of д. By contrast, the run time of PrunedDP++ should in

theory rise at an exponential rate, and indeed it rose sharply.

In Fig. 3 (bottom), we present the mean approximation ratio for

a query. For PrunedDP++, as an exact algorithm its approxima-

tion ratio was fixed at 1.0. Both BANKS-II and KeyKG+ computed

reasonably good answers since their approximation ratios were

satisfyingly below 1.2 on LinkedMDB and below 1.4 on the other

KGs, while BANKS-II achieved slightly better results than KeyKG+.
Their approximation ratios increased very slowly as д increased,

being consistent with their provable approximation ratios in O(д).
Conclusion. Whereas PrunedDP++ and BANKS-II generated

optimum or near-optimum GSTs, their run time was hardly accept-

able on the large DBpedia KG. KeyKG+ achieved a better trade-off

between result quality and run time. It never used more than 1s for

any query, and the quality of its computed GSTs was close to the

optimum. Therefore, the experiment results supported RH1.

Besides, in Table 3, KeyKG+-D with static HLs stored on disk used

less than 1s to answer a query over MONDIAL and LinkedMDB,

showing the potential to work on a low-resource machine. Even

in this memory-efficient setting, KeyKG+-D was at least 1 order of

magnitude faster than the baselines on all the three KGs.

5.5.2 Investigation of RH2. For RH2, to show the usefulness of our

proposed dynamic HL, we compared KeyKG+ with KeyKG. As shown
in Table 3, on MONDIAL and LinkedMDB, both algorithms used

less than 1ms for a query and their differences were not important.

On the large DBpedia KG, KeyKG+ remained at the millisecond level,

whereas KeyKG spent more than 10s. KeyKGwas not fast particularly
when keywords were matched to large sets of vertices, which in

turn, led to quadratically many calls to the getD subroutine using
a static HL. By contrast, using a dynamic HL in KeyKG+, the run
time of this part was in theory reduced by 1 order of magnitude,

and indeed the performance improvement was significant in the

experiments. Therefore, the experiment results supported RH2.

Besides, in Table 3, even with only static HL, KeyKG achieved at

least 1 order of magnitude improvement over the baselines on all

the three KGs, showing the technical superiority of our proposed

HL-powered algorithm.

5.5.3 Investigation of RH3. For RH3, to show the usefulness of

our new static HL (i.e., SHL), we compared it with PLL, RXL, and

SHP. The average size of a constructed vertex label is shown in

Fig. 4 (bars). SHL-200 constructed the smallest HLs on all the three

KGs. Compared with PLL and RXL, SHL-200 reduced the label

size by 17%–21% on MONDIAL, 13%–23% on LinkedMDB, and 5%–

13% on DBpedia. The results demonstrated the effectiveness of our

betweenness centrality based heuristic, relative to the degree based

heuristic (PLL) and the shortest-path trees based heuristic (RXL).

SHL-200 also outperformed the recent SHP, reducing the label size

by 3%–14% on different KGs. Therefore, the experiment results

supported RH3.

The effectiveness of SHL was also observed in Table 3. On all the

three KGs, KeyKG using SHLwas consistently faster than KeyKG-PLL
using the original implementation of PLL. On the largest DBpedia

KG, the run time was reduced by 8%.

Last but not least, we show the run time for constructing a static

HL in Fig. 4 (points). Comparing SHL-10, SHL-100, and SHL-200,

smaller HLs were constructed when increasing the number of pivots

and thus the run time. Although SHL-200 used more time than other

methods to construct a static HL, the construction was performed

offline. Indeed, it spent affordabe 4s, 112s, and 2,647s constructing

for MONDIAL, LinkedMDB, and DBpedia, respectively.

6 RELATEDWORK
In this section we review related work and consider various ap-

proaches to keyword search over graph data and to Hub Labeling.

6.1 Keyword Search over Graph Data
Query Interpretation. There is a body of work on keyword search
over graph data where the general idea is to first transform a key-

word query into a structured query [17, 18, 21, 44, 47, 48, 50, 53],

such as a SPARQL query for RDF graph, and then execute the struc-

tured query over a graph to retrieve answers. These methods are

orthogonal to ours. We follow a different direction. We directly

search for an optimum subgraph to answer the keyword query.

GST-based Methods. The direction we follow usually formu-

lates a GST problem or a variant thereof. To solve the problem,

BANKS [9] merges paths from keyword vertices to a common root

vertex to approximate a minimum-weight GST. BANKS-II [27] per-

forms bidirectional search to improve the performance of BANKS.

BLINKS [23] exploits precomputed distances and graph partitioning

to make bidirectional search more efficient. In [35], search is pruned

according to graph summaries. Apart from these approximation

algorithms, DPBF [15] is a dynamic programming solution and

finds a minimum-weight GST. PrunedDP++ [38] improves DPBF

with A* search, and achieves state-of-the-art performance.

Since the standard GST problem is NP-hard, it is not surpris-

ing that exact solutions such as DPBF and PrunedDP++ run in

exponential time, which is prohibitive for large graphs. Regarding

polynomial-time approximation algorithms with provable qual-

ity guarantees, Table 4 compares our approach with other prac-

tical solutions. The worst-case approximation ratio and run time

of KeyKG+ are generally comparable to the existing results. How-

ever, this worst case is rarely met in practice, and our experiments

show that KeyKG+ can be orders of magnitude faster than existing

algorithms on large KGs. Note that for Table 4 we only select some

practical algorithms that have the potential to work on a large KG.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov

Table 4: Comparison of approximation algorithms for key-
word search under theGST semantics. The results of BANKS,
BANKS-II, and BLINKS are sourced from [13]. (n: number of
vertices;m: number of edges; д: number of keywords.)

Algorithm Approx. Ratio Run Time

BANKS [9] O(д) O(n2 logn + nm)
BANKS-II [27] O(д) O(n2 logn + nm)
BLINKS [23] O(д) dependent on partitioning

KeyKG+ O(д) O(n2д + nд3)

Some other algorithms are not included due to their unacceptable

run time. For example, 2-Star [8] has a better approximation ratio

of O(
√
д lnд) but it cannot scale to large graphs.

Our approach shares some technical features with 1-Star [25].

Both of them rely on the availability of distances and shortest

paths, and they have the same provable approximation ratio. How-

ever, KeyKG+ may generate empirically better GSTs due to its more

thoughtful design. For example, to span a set of selected keyword

vertices, 1-Star simply merges the shortest paths from one vertex

to the other vertices in the set, whereas in KeyKG+ we construct a
small-weight tree in a greedy manner. Thanks to the proposed static

and dynamic HLs which realize efficient computation of distances

and shortest paths, KeyKG+ can be much faster than 1-Star which

has prohibitively high run time for large graphs.

Steiner Tree. The GST problem we address in this paper is

a generalized version of the Steiner tree problem. With the orig-

inal Steiner tree based formulation it is assumed that, in terms

of keyword search, each keyword is matched to only one ver-

tex. Algorithms for solving this problem, such as STAR [28] and

SketchLS [20], cannot be directly applied to our GST problem.

Retrieval-based Methods. To scale to large graphs, there are
methods that precompute and index a large number of size-bounded

subgraphs as candidate answers, e.g., r -radius graphs in EASE [37],

tuple units in SAINT [16]. Keyword search is then transformed into

a problem that is similar to traditional information retrieval—to

retrieve and rank subgraphs that are relevant to a keyword query.

The scalability and efficiency of these methods are essentially ob-

tained by significantly limiting the search space and thus sacrificing

quality. Besides, when the keywords in a query are not very close

to each other in the graph, e.g., their distances exceed the prede-

fined size bound of an indexed subgraph, empty answers will be

produced. It limits the application and usability of these methods.

By contrast, GSTs are not restricted by such structural bounds.

6.2 Hub Labeling
Exact HLs. Hub Labeling (HL) [1] is a popular type of distance

oracle [45] for answering exact distances between vertices. The

Pruned Landmark Labeling (PLL) [3] is an implementation of HL.

It leverages landmarks (i.e., hubs) to prune the Dijkstra algorithm.

The size of generated labels is related to the order of vertices where

pruned searches start. The original version of PLL [3] sorts vertices

by their degrees. The subsequent Robust eXact Labeling (RXL) [14]

uses shortest-path trees to establish a better order. Our static HL

sorts by approximate betweenness centrality and generates smaller

labels than PLL and RXL in the experiments. Our static HL also

empirically outperforms the Significant path based Hub Pushing

(SHP) [39], which picks significant vertices as landmarks. The com-

putation of significance combines a set of heuristics.

In addition to static HL, we further propose dynamic HL which

is online constructed and is relevant to the concrete keyword query.

Compared with static HL which indexes hubs for each vertex, our

dynamic HL can be viewed as an inverted index that maps hubs to

keyword vertices. By aggregating static labels and enabling random

access in constant time, it is particularly suitable for computing

distances on sets of vertices and brings about orders of magnitude

improvement in efficiency—both theoretically and empirically.

Approximate and Other HLs. There are other types of dis-

tance oracle [45]. Some are designed to compute approximate dis-

tances [7, 11, 43, 46, 52]. However, they are not suitable for our

setting because using approximate distances would affect the ap-

proximation ratio of our algorithm. More efficient implementations

have been developed for road networks [2, 19, 42, 54]. Unfortu-

nately, KGs generally do no have the special spatial properties of a

road network and hence these methods do not apply.

7 CONCLUSION
In this paper, we study keyword search over KGs under the GST

semantics. We introduced two algorithms: KeyKG that is based on a

static HL and KeyKG+ that is based on a dynamic HL, to efficiently

approximate GST-based keyword query answers. Our experiments

show that KeyKG+ is 3 orders of magnitude faster than previous

algorithms and is with comparable approximation loss. In particular,

on large KGs such as the well-known DBpedia, reasonably good

answers can be computed in milliseconds, showing the practicality

of our approach. The achieved satisfying performance is mainly

attributed to our novel dynamic HL that inverts and aggregates

query-relevant labels, and to our new static HL using a betweenness

centrality based heuristic that outperforms existing HLs. Potential

applications of these HLs are clearly not limited to our approach.

As for the future work, we note that rare distance oracles support

efficient edge deletion, which is a basic operation in the framework

of top-k GSTs with polynomial delay [34], so efficient top-k key-

word search remains unsolved in our approach. We plan to explore

this in our future work. Then, compared to the approximation algo-

rithm BANKS-II, the approximation ratio of KeyKG+ may be further

improved. Besides, there exist some large and dense graphs that

all existing HLs cannot index using small label sizes. In order to

cope with such graphs, one would have to develop other types of

efficient distance oracles or to consider alternative techniques.

ACKNOWLEDGMENTS
This work was supported in part by the National Key R&D Program

of China under Grant 2018YFB1005100, in part by the NSFC under

Grant 61772264, in part by the Six Talent Peaks Program of Jiangsu

Province under Grant RJFW-011, and in part by the SIRIUS Centre,

Norwegian Research Council project number 237898.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Wer-

neck. 2011. AHub-Based Labeling Algorithm for Shortest Paths in RoadNetworks.

In SEA. 230–241.

Keyword Search over Knowledge Graphs
via Static and Dynamic Hub Labelings WWW ’20, April 20–24, 2020, Taipei, Taiwan

[2] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast Shortest-path Distance Queries on Road Networks by Pruned Highway

Labeling. In ALENEX. 147–154.
[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD.
349–360.

[4] Ziyad AlGhamdi, Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017. A

Benchmark for Betweenness Centrality Approximation Algorithms on Large

Graphs. In SSDBM.

[5] Haris Angelidakis, Yury Makarychev, and Vsevolod Oparin. 2017. Algorithmic

and Hardness Results for the Hub Labeling Problem. In SODA. 1442–1461.
[6] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Marciuska,

and Dmitriy Zheleznyakov. 2016. Faceted search over RDF-based knowledge

graphs. J. Web Semant. 37-38 (2016), 55–74.
[7] Bahman Bahmani and Ashish Goel. 2012. Partitioned multi-indexing: bringing

order to social search. In WWW. 399–408.

[8] C. Douglass Bateman, Christopher S. Helvig, Gabriel Robins, and Alexander

Zelikovsky. 1997. Provably good routing tree construction with multi-port

terminals. In ISPD. 96–102.
[9] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S.

Sudarshan. 2002. Keyword Searching and Browsing in Databases using BANKS.

In ICDE. 431–440.
[10] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Soc.

25, 2 (2001), 163–177.

[11] Wei Chen, Christian Sommer, Shang-Hua Teng, and Yajun Wang. 2009. Compact

Routing in Power-Law Graphs. In DISC (Lecture Notes in Computer Science),
Vol. 5805. 379–391.

[12] Gong Cheng and Evgeny Kharlamov. 2017. Towards a semantic keyword search

over industrial knowledge graphs (extended abstract). In BigData. 1698–1700.
[13] Joel Coffman and Alfred C. Weaver. 2014. An Empirical Performance Evaluation

of Relational Keyword Search Techniques. IEEE Trans. Knowl. Data Eng. 26, 1
(2014), 30–42.

[14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. 2014.

Robust Distance Queries on Massive Networks. In ESA. 321–333.
[15] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.

2007. Finding Top-k Min-Cost Connected Trees in Databases. In ICDE. 836–845.
[16] Jianhua Feng, Guoliang Li, and Jianyong Wang. 2011. Finding Top-k Answers in

Keyword Search over Relational Databases Using Tuple Units. IEEE Trans. Knowl.
Data Eng. 23, 12 (2011), 1781–1794.

[17] Haizhou Fu and Kemafor Anyanwu. 2011. Effectively Interpreting Keyword

Queries on RDF Databases with a Rear View. In ISWC. 193–208.
[18] Grettel García, Yenier Izquierdo, Elisa Menendez, Frederic Dartayre, and Marco A.

Casanova. 2017. RDF Keyword-based Query Technology Meets a Real-World

Dataset. In EDBT. 656–667.
[19] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Net-

works. In WEA. 319–333.
[20] Andrey Gubichev and Thomas Neumann. 2012. Fast approximation of steiner

trees in large graphs. In CIKM. 1497–1501.

[21] Shuo Han, Lei Zou, Jeffrey Xu Yu, and Dongyan Zhao. 2017. Keyword Search on

RDF Graphs - A Query Graph Assembly Approach. In CIKM. 227–236.

[22] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik

Bratsberg, Alexander Kotov, and Jamie Callan. 2017. DBpedia-Entity v2: A Test

Collection for Entity Search. In SIGIR.
[23] Hao He, HaixunWang, Jun Yang, and Philip S. Yu. 2007. BLINKS: ranked keyword

searches on graphs. In SIGMOD. 305–316.
[24] Ian Horrocks, Martin Giese, Evgeny Kharlamov, and Arild Waaler. 2016. Using Se-

mantic Technology to Tame the Data Variety Challenge. IEEE Internet Computing
20, 6 (2016), 62–66.

[25] Edmund Ihler. 1990. Bounds on the quality of approximate solutions to the Group

Steiner Problem. In WG. 109–118.
[26] Edmund Ihler. 1991. The Complexity of Approximating the Class Steiner Tree

Problem. In WG. 85–96.
[27] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi

Desai, and Hrishikesh Karambelkar. 2005. Bidirectional Expansion For Keyword

Search on Graph Databases. In VLDB. 505–516.
[28] Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, and Gerhard

Weikum. 2009. STAR: Steiner-Tree Approximation in Relationship Graphs. In

ICDE. 868–879.
[29] Evgeny Kharlamov, Dag Hovland, Martin G. Skjæveland, Dimitris Bilidas, Ernesto

Jiménez-Ruiz, Guohui Xiao, Ahmet Soylu, Davide Lanti, Martin Rezk, Dmitriy

Zheleznyakov, Martin Giese, Hallstein Lie, Yannis E. Ioannidis, Yannis Kotidis,

Manolis Koubarakis, and Arild Waaler. 2017. Ontology Based Data Access in

Statoil. J. Web Semant. 44 (2017), 3–36.
[30] Evgeny Kharlamov, Yannis Kotidis, Theofilos Mailis, Christian Neuenstadt, Char-

alampos Nikolaou, Özgür L. Özçep, Christoforos Svingos, Dmitriy Zheleznyakov,

Yannis E. Ioannidis, Steffen Lamparter, Ralf Möller, and Arild Waaler. 2019. An

ontology-mediated analytics-aware approach to support monitoring and diag-

nostics of static and streaming data. J. Web Semant. 56 (2019), 30–55.
[31] Evgeny Kharlamov, Theofilos Mailis, Gulnar Mehdi, Christian Neuenstadt,

Özgür L. Özçep, Mikhail Roshchin, Nina Solomakhina, Ahmet Soylu, Christoforos

Svingos, Sebastian Brandt, Martin Giese, Yannis E. Ioannidis, Steffen Lamparter,

Ralf Möller, Yannis Kotidis, and Arild Waaler. 2017. Semantic access to streaming

and static data at Siemens. J. Web Semant. 44 (2017), 54–74.
[32] Evgeny Kharlamov, Gulnar Mehdi, Ognjen Savkovic, Guohui Xiao, Elem Güzel

Kalayci, and Mikhail Roshchin. 2019. Semantically-enhanced rule-based diag-

nostics for industrial Internet of Things: The SDRL language and case study for

Siemens trains and turbines. J. Web Semant. 56 (2019), 11–29.
[33] Evgeny Kharlamov,Martin G. Skjæveland, DagHovland, TheofilosMailis, Ernesto

Jiménez-Ruiz, Guohui Xiao, Ahmet Soylu, Ian Horrocks, and Arild Waaler. 2018.

Finding Data Should be Easier than Finding Oil. In BigData. 1747–1756.
[34] Benny Kimelfeld and Yehoshua Sagiv. 2006. Finding and approximating top-k

answers in keyword proximity search. In PODS. 173–182.
[35] Wangchao Le, Feifei Li, Anastasios Kementsietsidis, and Songyun Duan. 2014.

Scalable Keyword Search on Large RDF Data. IEEE Trans. Knowl. Data Eng. 26,
11 (2014), 2774–2788.

[36] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,

Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual

knowledge base extracted from Wikipedia. Semant. Web 6, 2 (2015), 167–195.
[37] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.

2008. EASE: an effective 3-in-1 keyword search method for unstructured, semi-

structured and structured data. In SIGMOD. 903–914.
[38] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2016. Efficient and Progressive

Group Steiner Tree Search. In SIGMOD. 91–106.
[39] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental

Study on Hub Labeling based Shortest Path Algorithms. PVLDB 11, 4 (2017),

445–457.

[40] Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine

Bordes, and Jason Weston. 2016. Key-Value Memory Networks for Directly

Reading Documents. In EMNLP.
[41] Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson,

and Jamie Taylor. 2019. Industry-scale knowledge graphs: lessons and challenges.

Commun. ACM 62, 8 (2019), 36–43.

[42] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

Road Networks. In SIGMOD. 709–724.
[43] Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy. 2010.

A sketch-based distance oracle for web-scale graphs. In WSDM. 401–410.

[44] Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Sören Auer.

2015. SINA: Semantic interpretation of user queries for question answering on

interlinked data. J. Web Semant. 30 (2015).
[45] Christian Sommer. 2014. Shortest-path queries in static networks. ACM Comput.

Surv. 46, 4 (2014), 45:1–45:31.
[46] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1

(2005), 1–24.

[47] Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer. 2007.

Ontology-Based Interpretation of Keywords for Semantic Search. In ISWC +
ASWC. 523–536.

[48] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. 2009. Top-k

Exploration of Query Candidates for Efficient Keyword Search on Graph-Shaped

(RDF) Data. In ICDE. 405–416.
[49] Stefan Voß. 1992. Steiner’s Problem in Graphs: Heuristic Methods. Discr. Appl.

Math. 40, 1 (1992), 45–72.
[50] Mohan Yang, Bolin Ding, Surajit Chaudhuri, and Kaushik Chakrabarti. 2014. Find-

ing Patterns in a Knowledge Base using Keywords to Compose Table Answers.

PVLDB 7, 14 (2014), 1809–1820.

[51] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. 2010. Keyword Search in Relational

Databases: A Survey. IEEE Data Eng. Bull. 33, 1 (2010), 67–78.
[52] Hongyang Zhang, Huacheng Yu, and Ashish Goel. 2019. Pruning based Distance

Sketches with Provable Guarantees on Random Graphs. In WWW. 2301–2311.

[53] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu. 2007. SPARK:

Adapting Keyword Query to Semantic Search. In ISWC + ASWC. 694–707.
[54] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng

Zhou. 2013. Shortest path and distance queries on road networks: towards

bridging theory and practice. In SIGMOD. 857–868.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Algorithm KeyKG with Static HL
	3.1 Algorithm KeyKG
	3.2 Static HL
	3.3 Analysis of Run Time

	4 Algorithm KeyKG+ with Dynamic HL
	4.1 Dynamic HL
	4.2 Algorithm KeyKG+
	4.3 Analysis of Run Time

	5 Experiments
	5.1 Experiment Setup
	5.2 Baselines
	5.3 Implementation of Our Approach
	5.4 Evaluation Metrics
	5.5 Results and Analysis

	6 Related Work
	6.1 Keyword Search over Graph Data
	6.2 Hub Labeling

	7 Conclusion
	Acknowledgments
	References

