作业1-8

UD第6章问题7、16、17 UD第7章问题1、8、9、10、11 UD第8章问题1、4、7、8、9、11 UD第9章问题2、4、12、13、14、16

Find an expression for each of the shaded sets in the Venn diagrams of Figure 6.5.

Problem 6.16. In each part of this problem, two sets, A and B, are defined. Prove that $A \subseteq B$ in each of the following:

- (a) $A = \{x^2 : x \in \mathbb{Z}\}$ and $B = \mathbb{Z}$;
- (b) $A = \mathbb{R}$ and $B = \{2x : x \in \mathbb{R}\};$
- (c) $A = \{(x,y) \in \mathbb{R}^2 : y = (5-3x)/2\}$ and $B = \{(x,y) \in \mathbb{R}^2 : 2y + 3x = 5\}$.
- (b) 目标 $\forall x$, $(x \in A \Rightarrow x \in B)$
 - $x \in A \Rightarrow \exists y \in \mathbb{R} = A, x = 2y$
 - 所以x ∈ B

Problem 7.8. Consider the following sets:

- (i) $(A \cap B) \setminus (A \cap B \cap C)$,
- (ii) $A \cap B \setminus (A \cap B \cap C)$,
- (iii) $A \cap B \cap C^c$,
- (iv) $(A \cap B) \setminus C$, and
- (v) $(A \setminus C) \cap (B \setminus C)$.

- (a) Which of the sets above are written ambiguously, if any?
- (b) Of the sets above that make sense, which ones equal the set sketched in Figure 7.2?
- (c) Prove that $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.

- $(A \cap B) \setminus (A \cap B \cap C)$
- $A \cap (B \setminus (A \cap B \cap C))$
- b) (i), (iii), (iv), (v)

c)
$$(A \cap B) \setminus C \equiv (A \cap B) \cap \neg C$$

 $\equiv (A \cap B) \cap (\neg C \cap \neg C)$
 $\equiv (A \cap \neg C) \cap (B \cap \neg C)$
 $\equiv (A \setminus C) \cap (B \setminus C)$

Problem 7.11. Prove or give a counterexample for the following statement.

Let X be the universe and A, $B \subseteq X$. If $A \cap Y = B \cap Y$ for all $Y \subseteq X$, then A = B.

7.11₽

$$A \cap Y = B \cap Y \text{ for all } Y \subseteq X .$$

$$\Rightarrow (A \cap Y) - (B \cap Y) = \emptyset .$$

$$\Rightarrow (A - B) \cap Y = \emptyset .$$
Since Y is not \emptyset all the time. $A - B = \emptyset .$

$$\Rightarrow A = B.$$

- 由于X⊆X,所以A∩X= B∩X
- 所以A=B

Problen 8.4. Prove or give a counterexample: Let $\{A_n : n \in \mathbb{Z}^+\}$ and $\{B_n : n \in \mathbb{Z}^+\}$ be two indexed collections of sets. If $A_n \subset B_n$ for all $n \in \mathbb{Z}^+$, then

$$\bigcap_{n=1}^{\infty} A_n \subset \bigcap_{n=1}^{\infty} B_n.$$

Counterexample: If
$$A_k = B_m = \emptyset$$
 ($k \neq m$), then $\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} B_n = \emptyset$.

let
$$A_1=\{1,2\}$$
 $A_2=\{1,3\}$ $B_1=\{1,2,4\}$ $B_2=\{1,3,5\}$ 。满足对于任意 n , $A_n \subset B_n$,但是。
$$\bigcap_{n=1}^{\infty} A_n=\{1\}=\bigcap_{n=1}^{\infty} B_n=\{1\}$$

Problem 8.8 Define

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \dots, 0, \dots, n-1, n\}).$$

The set A should be familiar to you. Guess what it is and then prove that your guess is correct.

- Guess: $A = \mathbb{Z}$
- Proof:

• Let
$$X_n = \{-n, -n+1, ..., n-1, n\}, n \in \mathbb{Z}^+$$

• Let
$$B = \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} - \{-n, -n + 1, ..., n - 1, n\})$$

• =
$$\bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} - X_n)$$

• =
$$\bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \cap \neg X_n)$$

•
$$= \mathbb{R} \cap \bigcap_{n \in \mathbb{Z}^+} (\neg X_n)$$

•
$$= \mathbb{R} \cap \neg (\bigcup_{n \in \mathbb{Z}^+} X_n)$$

•
$$= \mathbb{R} \cap \neg \mathbb{Z}$$

•
$$A = \mathbb{R} - B$$

•
$$= \mathbb{R} \cap \neg \mathbb{Z}$$

•
$$= \mathbb{R} \cap \neg (\mathbb{R} \cap \neg \mathbb{Z})$$

•
$$= \mathbb{R} \cap (\neg \mathbb{R} \cup \mathbb{Z})$$

•
$$= (\mathbb{R} \cap \neg \mathbb{R}) \cup (\mathbb{R} \cap \mathbb{Z})$$

$$\left(\bigcup_{n\in\mathbb{Z}^+} X_n\right) = \mathbb{Z}$$

Problem[#] **8.11.** A collection of sets \mathscr{A} is said to be **pairwise disjoint** if the following is satisfied: For all $X, Y \in \mathscr{A}$, if $X \cap Y \neq \emptyset$, then X = Y.

A comment about this definition may be in order: Speaking informally, a collection of sets is pairwise disjoint if whenever we choose two sets from the collection, they are disjoint or they are equal.

- (a) Give an example of a pairwise disjoint collection of infinitely many sets.
- (b) What is the contrapositive of "if $X \cap Y \neq \emptyset$, then X = Y"?
- (c) What is the converse of "if $X \cap Y \neq \emptyset$, then X = Y"?
- (d) If A is a pairwise disjoint collection of sets, does the assertion you found in (b) hold for all X, Y ∈ A?
- e If the assertion that you found in (b) holds for all *X* and *Y* in some set 𝒜, is 𝒜 a pairwise disjoint collection of sets? Yes, 直接同定义─致
- (f) Suppose that \mathscr{B} is a pairwise disjoint collection of sets. Can we conclude that $\bigcap_{X \in \mathscr{B}} X = \emptyset$?
- (g) Suppose that $\bigcap_{X \in \mathscr{B}} X = \emptyset$. Is \mathscr{B} necessarily a pairwise disjoint collection of sets?

Problem* 8.11. A collection of sets \mathscr{A} is said to be **pairwise disjoint** if the following is satisfied: For all $X, Y \in \mathscr{A}$, if $X \cap Y \neq \emptyset$, then X = Y.

A comment about this definition may be in order: Speaking informally, a collection of sets is pairwise disjoint if whenever we choose two sets from the collection, they are disjoint or they are equal.

(f) Suppose that \mathscr{B} is a pairwise disjoint collection of sets. Can we conclude that $\bigcap_{X \in \mathscr{B}} X = \emptyset$?

NO

- Case1: A仅包含一个集合
- Case2: A为multiset,且包含多个完全相同的集合。

Problem* 8.11. A collection of sets \mathscr{A} is said to be **pairwise disjoint** if the following is satisfied: For all $X, Y \in \mathscr{A}$, if $X \cap Y \neq \emptyset$, then X = Y.

A comment about this definition may be in order: Speaking informally, a collection of sets is pairwise disjoint if whenever we choose two sets from the collection, they are disjoint or they are equal.

(g) Suppose that $\bigcap_{X \in \mathscr{B}} X = \emptyset$. Is \mathscr{B} necessarily a pairwise disjoint collection of sets?

(g) No, If there is a set
$$A_{\alpha}=\varnothing$$
 , $\bigcap_{\alpha\in I}A_{\alpha}=\varnothing$ whether $\left\{A_{\alpha}:\alpha\in I\right\}$ is a pairwise

disjoint collection.

(g)no.

设 A₁={1,2},A₂={1,3},A₃={4}

这样满足条件但是却不是 pairwise disjoint collection

- (a) Prove this statement.
- (b) One of the two implications does not require the sets to be nonempty. Which one?
- (c) If we do not require the sets to be nonempty, then the statement is false. Give examples of sets A, B, C, and D to show the necessity of the assumption that the sets be nonempty.

9.12. (a)...

1. If
$$A = C$$
 and $B = D$, then $A \times B = C \times D$...

2. If $A \times B = C \times D$...

For all
$$(x, y) \in A \times B$$
, it means $x \in A$ $y \in B$

for all $x \in A, y \in B$, we have $(x, y) \in A \times B = C \times D$ $\therefore x \in C, y \in D$

Since $A \times B = C \times D$, we get that $\begin{array}{c} X \in C \\ y \in D \end{array}$. It is the same case when

$$(x, y) \in A \times B.$$
So
$$A = C$$

$$B = D$$

Problem 9.23. This problem introduces rigorous definitions of an ordered pair and Cartesian product. Let A be a set and $a, b \in A$. We define the ordered pair of a and b with first coordinate a and second coordinate b as

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Using this definition prove the following.

- (a) If (a,b) = (x,y), then a = x and b = y.
- (b) If $a \in A$ and $b \in B$, then $(a,b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Now we are able to define the Cartesian product of the two sets A and B as the set

$$A \times B = \{x \in \mathcal{P}(\mathcal{P}(A \cup B)) : x = (a, b) \text{ for some } a \in A \text{ and some } b \in B\}.$$

(c) Using the definitions introduced in this problem, prove that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

This is a pretty complicated definition. It is also not our idea, but rather an idea that was born from axioms. P. Halmos's book, [41], is an excellent reference for this subject.

Problem 9.16. This problem introduces rigorous definitions of an ordered pair and Cartesian product. Let A be a set and $a, b \in A$. We define the ordered pair of a and b with first coordinate a and second coordinate b as

$$(a,b) = \{\{a\}, \{a,\underline{b}\}\}.$$
 允许 multiset

Using this definition prove the following.

(a) If
$$(a,b) = (x,y)$$
, then $a = x$ and $b = y$.

先证a=x

下证b=y,分情况讨论

case1:
$$a = b$$
, 可得 $x = a = b = y$
case2: $a \neq b$,假设 $b \neq y$
 $\therefore \{a, b\} = \{x, y\}$
 $\therefore a = y, b = x$
 $\therefore x = a = x = b$

Problem 9.16. This problem introduces rigorous definitions of an ordered pair and Cartesian product. Let A be a set and $a, b \in A$. We define the ordered pair of a and b with first coordinate a and second coordinate b as

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Using this definition prove the following.

- (a) If (a,b) = (x,y), then a = x and b = y.
- (b) If $a \in A$ and $b \in B$, then $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Now we are able to define the Cartesian product of the two sets A and B as the set

$$A \times B = \{x \in \mathcal{P}(\mathcal{P}(A \cup B)) : x = (a, b) \text{ for some } a \in A \text{ and some } b \in B\}.$$

(c) Using the definitions introduced in this problem, prove that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

This is a pretty complicated definition. It is also not our idea, but rather an idea that was born from axioms. P. Halmos's book, [41], is an excellent reference for this subject.

- 目标: $\forall x(x \in A \times B \Rightarrow x \in C \times D)$
- Proof:
 - Let $x = (a, b) = \{\{a\}, \{a, b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$, for some $a \in A, b \in B$
 - $: A \subseteq C, B \subseteq D$
 - $: A \cup B \subseteq C \cup D$

 - $x \in \mathcal{P}(\mathcal{P}(A \cup B))$ (1)
 - $X : a \in A \subseteq C, b \in B \subseteq D$ (2)
 - 由(1)(2)结合定义,可得 $x \in C \times D$