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We start with the fundamental definition of approximation algorithms. Infor-
mally and roughly, an approximation algorithm for an optimization problem
is an algorithm that provides a feasible solution whose quality does not differ
too much from the quality of an optimal solution.

o PREAHAEdoes not differ too much?
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relative error

_ |eost(A(z)) — Opty(z)|
sale)= Optyl)

ea(n) =max {e4(z) |z e Lin(EZ)"}.

— approximation ratio

R r?q_.iz_[.‘ﬂﬂ?] OP?'.U':]
Ra(zx) = ma { Opty (z) * cost(A []b}

Ra(n)=max{Ra(z)|ze Lin (X"},
— &-approximation algorithm

Ral(x) = & for everyx € Ly.

— f(n)-approximation algorithm

Rain) < fin) for everyn € IN.
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Algorithm 4.2.1.3 (GMS (GREEDY MAKESPAN SCHEDULE)).

Input: 1= {py,....pn,m), n, m, p1,...,Pn positive integers and m = 2,
Step 1: Sert p,....Pn.
To simplify the notation we assume p; = p3 = --- = py in the rest
of the algorithm.
Step 2: fori=1tomdo
begin T := {i};
Time(T;) =
end
{In the initialization step the m largest jobs are distributed to the
m machines. At the end, T; should contain the indices of all jobs
assigned to the ith machine for i =1,... m.}
Step 3. fori=m+1to n do
begin compute an [ such that
Time(T}) := min{ Time(T;)|1 < j < m};

T =T, {1}1
Time(T}) .= Time(T}) + p:
end

Output: (Ty, Tz, ..., Tm).
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Optys(I) = p1 Zp2 =+ = py. (4.1)
T"- .
Optygs(1) > LBt (42)
T
1]
i < Z—E—li (4.3)

(1) Let n < m.

Since '”Ptn.is(” 2 m {4'1] and E‘J’].‘Eﬂ{{l}! {2}' vy {ﬂ-}, yrr ] . GMS
has found an optimal solution and so the a.pprmc:matmn ra.tm is 1.
(2) Let n = m.

Let T} be such that cost(T}) = 3 . pr = cost(GMS(I}), and let k be the
largest index in Ty. If & < m, then Tj| = 1 and so Optys(f) = p1 = i
and GMS(/} is an optimal solution.

Now, assume m < k. Following Figure 4.2 we see that

Opt s (1) = cost(GMS(I)) — pi (4.4)
because of Ek 11 pi = m - [cost(GMS(T)) — px| and (4.2).

k
cost(GMS(I)) — Optys(l) < pe < (Zp‘) /k- (4.5)

(4.4} (4.3)

k
cost(GMS(1)) ~ Optys(1) _ (Zn \pi) [k cmor

Opt s (1) im (om gy pi) fm ~

(4.2}
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cost (GME(F)}

cost{GMEBI{T)) —py

Fig. 4.2.
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Definition 4.2.1.6. Let U = (X}, X, L, Ly, M, cost, goal) be an optimiza-
tion problern. An algorithm A is colled o polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (z,2) € Ly xIR", A computes
a feasible solution A(z) with a relative error at most £, and Time (z,=71)
can be bounded by a function® that is polynomial in ||, If Timea(z,2"") can

be bounded by a function that is polynomial in both |z) and 7', then we say
that A is a fully polynomial-time approximation scheme (FPTAS) for
o,

o PRIEAPRAREIX PN A)1E?
— The advantage of PTASs is that the user has the choice of € in this

tradeoff of the quality of the output and the amount of computer
work.

— Probably a FPTAS is the best that one can have for a NP-hard
optimization problem.
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NPO(I):
NPO(I):
NPO(III):

NPO(IV):

NPO(V):
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Contains every optimization problem from NFO for which there

exists a FPTAS.

{In Section 4.3 we show that the knapsack problem belongs to

this class. }

Contains every optimization problem from NPO that has a

PTAS.

{In Section 4.3.4 we show that the makespan scheduling problem

belongs to this class. }

Contains every optimization problem I € NPO such that

(i) there is a polynomial-time &-approximation algorithm for
some § = 1, and

(ii) there is no polynomial-time d-approximation algorithm for 7
for some d < & (possibly under some reasonable assumption
like P & NP), i.e., there is no PTAS for UV,

{ The minimum vertex cover problem, MAX-SAT, and A-TSP are

examples of members of this class. }

Contains every [ € NP0 such that

(i) there is a polynomial-time f(n)-approximation algorithm for
[ for some f: IN — IR™, where f is bounded by a polyloga-
rithmic function, and

(ii) under some reasonable assumption like P # NP, there does
not exist any polynomial-time d-approximation algorithm for
U for any d € R*.

{The set cover problem belongs to this class.}

Contains every [J € NPO such that if there exists a polynomial-

time f{n)}-approximation algorithm for U7, then (under some rea-

sonable assumption like P # NP) f(r) is not bounded by any

polylogarithmic function.

{TSP and the maximum clique problem are well-known members

of this class. }
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Definition 4.2.3.1. Let U = (X, X, L, Ly, M, cost, goal) and U =
(X1, Yo, L, L, M, cost, goal) be two optimization problems with Ly C L. A
distance function for U according to Ly is any function hy + L — R=°
satisfying the properties

N

N
7

(i) hp(z) =0 for every z € Ly, and
{ii) b is polynomial-time computable.

Let b be a distance function for U according to L;. We define, for anyr e R™,
Ball,py(Ly) = {we L|h(w) < 7}.5

Let A be a consistent algorithm for U, and let A be an c-approximation al-
gorithm for U for some ¢ € R™'. Let p be a positive real We say that
A is p-stable according to h if, for every real 0 < r < p, there ex-
ists a 8.0 € R™' such that A is o &, .-approzimation elgorithm for U, =
(X7, o, L, Ball, y(L1), M, cost, goal).

A i= stable according to h if A is p-stable according to h for every
pe R". We say that A is unstable according to h if A is not p-stable for
any pe R,

For every posifive integer v, and every function f, : IN — IR™" we say that
A iz (r, fr(n))-quasistable according to h if 4 is an f,(n)-approzimation
algorithm for U, = (X}, Xo, L, Ball; (L), M, cost, goal).
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i T, 0] = max m ﬂ({ﬂ-‘ U}J -
dist(G,c) = ma {“‘ . {:rt{u.p};wr'i{w‘-*} 1

u?E"-‘:“?réP:-'”?EF}}:

u, v,p € V(G),

; e({u, v}) ‘ .
dist (G, c) = max < 0, max ¢ =———— — 1 |1, v € V(@) and
6o { {1.111 c({pi,pir}) L

%= P, P2, Pm = ¥ i5 a simple path between u and v

of length at most &k (ie, m+ 1< k) }}

distance (7, ¢) = max{disty (G, ) |2 < k < V(&) — 1}

o I, e LA 4,2

el{u,v}) < (1 +ri(c({u,p}) +cl{p, v}))

o IREEFE:THEXMER M, Z5H—distanceJH 15 ?
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Note that applving the concept of stability to PTASs one
can get two different outcomes. Let us consider a PTAS A as a collection of
polynomial-time (1 + ¢)-approximation algorithms A, for every £ € R, If
A, is stable according to a distance measure h for every £ > 0, then we can
obtain either

(i) a PTAS for U, = (¥}, KXo, L, Ball, y(L;), M, cost, goal) for every r € mt
(this happens, for instance, if §,. = 1 + = - f(r), where f is an arbitrary
function), or

(ii) a d,.-approximation algorithm for U, for every r € R, but no PTAS for
U, for any r € IRT (this happens, for instance, if §,. = 1+ r + ).

10
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Definition 4.2.4.1. Let U = (X, Eg, L, Ly, M, cost, goal) be an optimiza-
tion problem. A constraint distance function for UV is any function h :
Ly x X5 — R2Y such that

(i) hix, §) = 0 for every S € M(z),
(i) h(xz,8) = 0 for every S ¢ M(zx), and
{iii) h is polynomial-fime computable.

For every £ € RT, and every z € L;, MP(z)= {5 € T} | hiz,5) < e} is the
e-ball of M(2) according to h.

Definition 4.2.4.2. Let U = (£, Xo, L, L1, M, cost, goal) be an optimiza-
tion problem, and let h be a constraint distance function for U.

An optimization algorithm A for [ is called an h-dual e-approximation
algorithm for U, if for every x € Ly,

(i) A(z) € ME{z), and
fii) r-aet(fl[ z)) = Opty(z) if goal = mazrimum, and
cost(A(z)) < Opty(z) if goal = minimum.

Definition 4.2.4.3. Let Il = (Z;,Eg, L, L1, M, cost, goal) be an optimiza-
tion problem, and let h be a constraint distance function for U.

An algerithm A is called h-dual polynomial-time approximation
scheme (h-dual PTAS for L7), if

(i) for every input (x,€) € Ly x R*, A(z,e) € MMz,
(it} cost(A(x,€)) = Opty(z) if goal = mazimum, and
cost( Az, ) < Opty(z) if goal = minimum, and
(iii) Timea(z,e™") is bounded by a function that is polynomial in |x|.
If Timea(z,e™') can be bounded by a function that is polynomial in both |

and £, then we say that A is a h-dual fully polynomial-time approxi-
mation scheme (h-dual FPTAS) for U,
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hi1,T) = IIHLX.{[}IIIHLJC{ZP,{ |5 = 1..2,.....'m} - l} .
IETy
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