- 教材讨论
 - JH第4章第1、2节

问题1: 近似算法的基本概念

• 什么样的算法可以称作近似算法?

We start with the fundamental definition of approximation algorithms. Informally and roughly, an approximation algorithm for an optimization problem is an algorithm that provides a feasible solution whose quality does not differ too much from the quality of an optimal solution.

你怎么理解does not differ too much?

问题1:近似算法的基本概念(续)

- 你怎么理解这些概念?
 - relative error

$$\varepsilon_{\mathbf{A}}(\mathbf{x}) = \frac{|cost(A(\mathbf{x})) - Opt_{U}(\mathbf{x})|}{Opt_{U}(\mathbf{x})}.$$

$$\varepsilon_{\mathbf{A}}(\mathbf{n}) = \max \left\{ \varepsilon_{A}(\mathbf{x}) \, | \, \mathbf{x} \in L_{I} \cap \left(\Sigma_{I}\right)^{n} \right\}.$$

approximation ratio

$$egin{aligned} m{R_A(x)} &= \max \left\{ rac{cost(A(x))}{Opt_U(x)}, rac{Opt_U(x)}{cost(A(x))}
ight\}. \ \ m{R_A(n)} &= \max \left\{ R_A(x) \, | \, x \in L_I \cap (\Sigma_I)^n
ight\}. \end{aligned}$$

- δ -approximation algorithm

$$R_A(x) \le \delta$$
 for every $x \in L_I$.

f(n)-approximation algorithm

$$R_A(n) \leq f(n)$$
 for every $n \in \mathbb{N}$.

问题1:近似算法的基本概念(续)

• 这个算法的基本过程是什么?

```
Algorithm 4.2.1.3 (GMS (GREEDY MAKESPAN SCHEDULE)).
   Input: I = (p_1, \dots, p_n, m), n, m, p_1, \dots, p_n positive integers and m \ge 2.
    Step 1: Sort p_1, \ldots, p_n.
              To simplify the notation we assume p_1 \geq p_2 \geq \cdots \geq p_n in the rest
              of the algorithm.
    Step 2: for i = 1 to m do
                 begin T_i := \{i\};
                    Time(T_i) := p_i
                 end
              \{ \mbox{In the initialization step the } m \mbox{ largest jobs are distributed to the } \}
              m machines. At the end, T_i should contain the indices of all jobs
              assigned to the ith machine for i = 1, ..., m.
    Step 3: for i = m + 1 to n do
                 begin compute an l such that
                    Time(T_l) := \min\{Time(T_i)|1 \le j \le m\};
                    T_l := T_l \cup \{i\};
                    Time(T_l) := Time(T_l) + p_i
                 end
    Output: (T_1, T_2, \ldots, T_m).
```

问题1:近似算法的基本概念(续)

• 你能逐步推导出它的approximation ratio吗?

$$Opt_{MS}(I) \ge p_1 \ge p_2 \ge \cdots \ge p_n.$$
 (4.1)

$$Opt_{MS}(I) \ge \frac{\sum_{i=1}^{n} p_i}{m}$$
 (4.2)

$$p_k \le \frac{\sum_{i=1}^k p_i}{k} \tag{4.3}$$

- Let n ≤ m.
 Since Opt_{MS}(I) ≥ p₁ (4.1) and cost({1}, {2},...,{n}, ∅,..., ∅) = p₁, GMS has found an optimal solution and so the approximation ratio is 1.
- (2) Let n > m. Let T_l be such that $cost(T_l) = \sum_{r \in T_l} p_r = cost(GMS(I))$, and let k be the largest index in T_l . If $k \leq m$, then $|T_l| = 1$ and so $Opt_{MS}(I) = p_1 = p_k$ and GMS(I) is an optimal solution.

Now, assume m < k. Following Figure 4.2 we see that

$$Opt_{MS}(I) \ge cost(GMS(I)) - p_k$$
 (4.4)

because of $\sum_{i=1}^{k-1} p_i \ge m \cdot [cost(GMS(I)) - p_k]$ and (4.2).

$$cost(GMS(I)) - Opt_{MS}(I) \le p_k \le \left(\sum_{i=1}^{k} p_i\right) / k.$$
 (4.5)

$$\frac{cost(\mathrm{GMS}(I)) - Opt_{\mathrm{MS}}(I)}{Opt_{\mathrm{MS}}(I)} \leq \frac{\left(\sum_{i=1}^{k} p_i\right)/k}{\left(\sum_{i=1}^{n} p_i\right)/m} \leq \frac{m}{k} < 1.$$

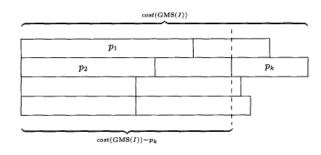


Fig. 4.2.

问题1: 近似算法的基本概念(续)

• 你怎么理解PTAS和FPTAS? 它们有什么区别?

Definition 4.2.1.6. Let $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal)$ be an optimization problem. An algorithm A is called a **polynomial-time approximation** scheme (**PTAS**) for U, if, for every input pair $(x, \varepsilon) \in L_I \times \mathbb{R}^+$, A computes a feasible solution A(x) with a relative error at most ε , and $Time_A(x, \varepsilon^{-1})$ can be bounded by a function A(x) that is polynomial in A(x) in A(x) can be bounded by a function that is polynomial in both A(x) and A(x) and A(x) then we say that A(x) is a fully polynomial-time approximation scheme (FPTAS) for A(x) for A(x) is a fully polynomial-time approximation scheme (FPTAS) for A(x) for A(x) is a fully polynomial-time approximation scheme (FPTAS) for A(x) for A(x) for A(x) for A(x) fully polynomial-time approximation scheme (FPTAS) for A(x) for A(x) fully polynomial-time approximation scheme (FPTAS) fully polynomial-time approximation scheme (FPTAS)

• 你怎么理解这两句话?

- The advantage of PTASs is that the user has the choice of ϵ in this tradeoff of the quality of the output and the amount of computer work.
- Probably a FPTAS is the best that one can have for a NP-hard optimization problem.

问题2: NPO的分类

• 你怎么理解这5种类型?分类的依据是什么?

NPO(I): Contains every optimization problem from NPO for which there exists a FPTAS.

> {In Section 4.3 we show that the knapsack problem belongs to this class.}

NPO(II): Contains every optimization problem from NPO that has a PTAS.

> {In Section 4.3.4 we show that the makespan scheduling problem belongs to this class.}

NPO(III): Contains every optimization problem $U \in NPO$ such that

- (i) there is a polynomial-time δ-approximation algorithm for some δ > 1, and
- (ii) there is no polynomial-time d-approximation algorithm for U
 for some d < δ (possibly under some reasonable assumption
 like P ≠ NP), i.e., there is no PTAS for U.

{The minimum vertex cover problem, Max-Sat, and \triangle -TSP are examples of members of this class.}

NPO(IV): Contains every $U \in NPO$ such that

- (i) there is a polynomial-time f(n)-approximation algorithm for U for some f: N → R⁺, where f is bounded by a polylogarithmic function, and
- under some reasonable assumption like P ≠ NP, there does not exist any polynomial-time δ-approximation algorithm for U for any δ ∈ IR⁺.

{The set cover problem belongs to this class.}

NPO(V): Contains every $U \in \text{NPO}$ such that if there exists a polynomialtime f(n)-approximation algorithm for U, then (under some reasonable assumption like $P \neq NP$) f(n) is not bounded by any polylogarithmic function.

> {TSP and the maximum clique problem are well-known members of this class.}

问题3: stability

- 你觉得讨论stability的意义是什么?
- 你怎么理解这些概念?

Definition 4.2.3.1. Let $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal)$ and $\overline{U} = (\Sigma_I, \Sigma_O, L, L, \mathcal{M}, cost, goal)$ be two optimization problems with $L_I \subset L$. A distance function for \overline{U} according to L_I is any function $h_L : L \to \mathbb{R}^{\geq 0}$ satisfying the properties

- (i) $h_L(x) = 0$ for every $x \in L_I$, and
- (ii) h is polynomial-time computable.

Let h be a distance function for \overline{U} according to L_I . We define, for any $r \in \mathbb{R}^+$,

$$Ball_{r,h}(L_I) = \{w \in L \mid h(w) \le r\}.$$

Let A be a consistent algorithm for \overline{U} , and let A be an ε -approximation algorithm for U for some $\varepsilon \in \mathbb{R}^{>1}$. Let p be a positive real. We say that A is **p-stable according to** h if, for every real $0 < r \le p$, there exists a $\delta_{r,\varepsilon} \in \mathbb{R}^{>1}$ such that A is a $\delta_{r,\varepsilon}$ -approximation algorithm for $U_r = (\Sigma_I, \Sigma_O, L, Ball_{r,h}(L_I), \mathcal{M}, cost, goal)$.

A is stable according to h if A is p-stable according to h for every $p \in \mathbb{R}^+$. We say that A is unstable according to h if A is not p-stable for any $p \in \mathbb{R}^+$.

For every positive integer r, and every function $f_r : \mathbb{N} \to \mathbb{R}^{>1}$ we say that A is $(r, f_r(n))$ -quasistable according to h if A is an $f_r(n)$ -approximation algorithm for $U_r = (\Sigma_I, \Sigma_O, L, Ball_{r,h}(L_I), \mathcal{M}, cost, goal)$.

问题3: stability (续)

你怎么理解TSP中的这些distance?

$$\begin{aligned} dist(G,c) &= \max \left\{ 0, \max \left\{ \frac{c(\{u,v\})}{c(\{u,p\}) + c(\{p,v\})} - 1 \,\middle|\, u,v,p \in V(G), \\ u &\neq v, u \neq p, v \neq p \right\} \right\}, \\ dist_k(G,c) &= \max \left\{ 0, \max \left\{ \frac{c(\{u,v\})}{\sum_{i=1}^m c(\{p_i,p_{i+1}\})} - 1 \,\middle|\, u,v \in V(G) \text{ and } \right. \\ u &= p_1, p_2, \ldots, p_m = v \text{ is a simple path between } u \text{ and } v \\ of \text{ length at most } k \text{ (i.e., } m+1 \leq k) \right\} \right\} \\ distance(G,c) &= \max \{ dist_k(G,c) \, | \, 2 \leq k \leq |V(G)| - 1 \}. \end{aligned}$$

- 例如, $Ball_{r,dist}(L_{\triangle})$ 中都是些什么? $c(\{u,v\}) \leq (1+r)(c(\{u,p\})+c(\{p,v\}))$
- 你能基于其它难问题,举出一些distance的例子吗?

问题3: stability (续)

• 你怎么理解PTAS的stability?

Note that applying the concept of stability to PTASs one can get two different outcomes. Let us consider a PTAS A as a collection of polynomial-time $(1 + \varepsilon)$ -approximation algorithms A_{ε} for every $\varepsilon \in \mathbb{R}^+$. If A_{ε} is stable according to a distance measure h for every $\varepsilon > 0$, then we can obtain either

- (i) a PTAS for U_r = (Σ_I, Σ_O, L, Ball_{r,h}(L_I), M, cost, goal) for every r ∈ ℝ⁺ (this happens, for instance, if δ_{r,ε} = 1 + ε · f(r), where f is an arbitrary function), or
- (ii) a δ_{r,ε}-approximation algorithm for U_r for every r ∈ ℝ⁺, but no PTAS for U_r for any r ∈ ℝ⁺ (this happens, for instance, if δ_{r,ε} = 1 + r + ε).

问题4: dual approximation

- 你觉得讨论dual approximation的意义是什么?
- 这里的distance和之前的distance有什么区别?
- 你怎么理解这些概念?

```
Definition 4.2.4.1. Let U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal) be an optimiza-
tion problem. A constraint distance function for U is any function h:
L_I \times \Sigma_O^* \to \mathbb{R}^{\geq 0} such that
 (i) h(x, S) = 0 for every S \in \mathcal{M}(x),
(ii) h(x,S) > 0 for every S \notin \mathcal{M}(x), and
(iii) h is polynomial-time computable.
For every \varepsilon \in \mathbb{R}^+, and every x \in L_I, \mathcal{M}_{\varepsilon}^h(x) = \{S \in \Sigma_O^* | h(x, S) \le \varepsilon\} is the
\varepsilon-ball of \mathcal{M}(x) according to h.
Definition 4.2.4.2. Let U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal) be an optimiza-
tion problem, and let h be a constraint distance function for U.
    An optimization algorithm A for U is called an h-dual \epsilon-approximation
algorithm for U, if for every x \in L_I,
 (i) A(x) \in \mathcal{M}_{\epsilon}^{h}(x), and
(ii) cost(A(x)) \ge Opt_U(x) if goal = maximum, and
    cost(A(x)) \le Opt_U(x) if goal = minimum.
Definition 4.2.4.3. Let U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal) be an optimiza-
tion problem, and let h be a constraint distance function for U.
    An algorithm A is called h-dual polynomial-time approximation
scheme (h-dual PTAS for U), if
(i) for every input (x, \varepsilon) \in L_I \times \mathbb{R}^+, A(x, \varepsilon) \in \mathcal{M}_{\varepsilon}^h(x),
(ii) cost(A(x, \varepsilon)) \ge Opt_U(x) if goal = maximum, and
     cost(A(x, \varepsilon)) \leq Opt_U(x) if goal = minimum, and

 (iii) Time<sub>A</sub>(x, ε<sup>-1</sup>) is bounded by a function that is polynomial in |x|.

If Time_A(x, \varepsilon^{-1}) can be bounded by a function that is polynomial in both |x|
and \varepsilon^{-1}, then we say that A is a h-dual fully polynomial-time approxi-
mation scheme (h-dual FPTAS) for U.
```

问题4: dual approximation (续)

• 你怎么理解BIN-P中的这个distance?

$$h(I,T) = \max \left\{ 0, \max \left\{ \sum_{l \in T_i} p_l \mid i = 1, 2, \dots, m \right\} - 1 \right\}.$$

• 你能基于其它难问题,举出一些distance的例子吗?