平面图与图着色
可平面图(Planar Graph)

• 如果图G能够被画在一个平面上且图中的任意两条边都不相交，则图G被称为可平面图。
Regions

- Exterior region
- Boundary of region
The Euler Identity

• Theorem 9.1
 – If G is a connected plane graph of order n, size m and having r regions, then $n-m+r =2$.
Theorem 9.2

• If G is a planar graph of order $n \geq 3$ and size m, then $m \leq 3n-6$.

• Corollary 9.3
 – Every planar graph contains a vertex of degree 5 or less.

• Corollary 9.4
 – K_5 is nonplanar.
Theorem 9.5

• The graph $K_{3,3}$ is nonplanar.
Kuratowski’s theorem

• A graph G is planar if and only if G does not contain K_5, $K_{3,3}$, or a subdivision of K_5 or $K_{3,3}$ as a subgraph.

 – A graph $G’$ is called a subdivision of a graph G if one or more vertices of degree 2 are inserted into one or more edges of G.
Graph Coloring

- Dated back to 1852, Francis Guthrie
- → De Morgan →
Vertex Coloring

• Assignment of colors to the vertices of G, one color to each vertex, such that adjacent vertices are colored differently.
• Chromatic number, $\chi (G)$
• k-colorable; k-coloring; k-chromatic.
The Four Color Theorem

• The chromatic number of every planar graph is at most 4.
Theorem 10.5

- For every graph G of order n,
 - $\chi(G) \geq \omega(G)$ and $\chi(G) \geq n/\beta(G)$.
Theorem 10.7

• For every graph
 \[\chi(G) \leq 1 + \Delta(G). \]
Theorem 10.8 (Brooks’ Theorem)

• For every connected graph G that is not an odd cycle or a complete graph,
 – $X(G) \leq \Delta(G)$.