问题反馈

13/12/6

Paradox

- Barber shaves all those who do not shave themselves.
- Collection D includes all collections do not include themselves as elements.
- Be careful when creating a defining property.

Problem 7.8.

Consider the following sets:

- (i) $(A \cap B) \setminus (A \cap B \cap C)$,
- (ii) $A \cap B \setminus (A \cap B \cap C)$,
- (iii) $A \cap B \cap C^c$,
- (iv) $(A \cap B) \setminus C$, and
- (v) $(A \setminus C) \cap (B \setminus C)$.
- (a) Which of the sets above are written ambiguously, if any?

Problem 7.11.

Prove or give a counterexample for the following statement.

Let *X* be the universe and *A*, $B \subseteq X$. If $A \cap Y = B \cap Y$ for all $Y \subseteq X$, then A = B.

Problem 8.1.

Consider the intervals of real numbers given by $A_n = [0, 1/n)$, $B_n = [0, 1/n]$, and $C_n = (0, 1/n)$.

- (a) Find $\bigcup_{n=1}^{\infty} A_n$, $\bigcup_{n=1}^{\infty} B_n$, and $\bigcup_{n=1}^{\infty} C_n$.
- (b) Find $\bigcap_{n=1}^{\infty} A_n$, $\bigcap_{n=1}^{\infty} B_n$, and $\bigcap_{n=1}^{\infty} C_n$.
- (c) Does $\bigcup_{n\in\mathbb{N}} A_n$ make sense? Why or why not?

```
The natural numbers \mathbb{N} = \{0, 1, 2, 3, \ldots\}.
```

The **integers**
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
.

The **positive integers**
$$\mathbb{Z}^+ = \{1, 2, 3, \ldots\}.$$

The real numbers \mathbb{R} .

The **plane**
$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}.$$

For
$$n \in \mathbb{Z}^+$$
, **Euclidean** n -space $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_j \in \mathbb{R} \text{ for } j = 1, 2, \dots, n\}.$

The **rational numbers**
$$\mathbb{Q} = \{p/q : p, q \in \mathbb{Z} \text{ and } q \neq 0\}.$$

The **complex numbers**
$$\mathbb{C} = \{a + bi : i^2 = -1 \text{ and } a, b \in \mathbb{R}\}.$$

Problem 8.4.

Prove or give a counterexample: Let $\{A_n : n \in \mathbb{Z}^+\}$ and $\{B_n : n \in \mathbb{Z}^+\}$ be two indexed families of sets. If $A_n \subset B_n$ for all $n \in \mathbb{Z}^+$, then

$$\bigcap_{n=1}^{\infty} A_n \subset \bigcap_{n=1}^{\infty} B_n.$$

(Recall that $A \subset B$ means strict inclusion; that is, $A \subseteq B$ and $A \neq B$.)

Problem¹ 8.11.

A collection of sets $\{A_{\alpha} : \alpha \in I\}$ is said to be a **pairwise disjoint collection** if the following is satisfied: For all $\alpha, \beta \in I$, if $A_{\alpha} \cap A_{\beta} \neq \emptyset$, then $A_{\alpha} = A_{\beta}$. Suppose that each set A_{α} is nonempty.

- (a) Give an example of pairwise disjoint sets A_1, A_2, A_3, \ldots
- (b) What is the contrapositive of "if $A_{\alpha} \cap A_{\beta} \neq \emptyset$, then $A_{\alpha} = A_{\beta}$ "?
- (c) What is the converse of "if $A_{\alpha} \cap A_{\beta} \neq \emptyset$, then $A_{\alpha} = A_{\beta}$ "?
- (d) If $\{A_{\alpha} : \alpha \in I\}$ is a pairwise disjoint collection, does the assertion you found in (b) hold for all α and β in I?
- (e) If the assertion that you found in (b) holds for all α and β in I, is $\{A_{\alpha} : \alpha \in I\}$ a pairwise disjoint collection?
- (f) If $\{A_{\alpha} : \alpha \in I\}$ is a pairwise disjoint collection of sets, does it follow that $\bigcap_{\alpha \in I} A_{\alpha} = \emptyset$?
- (g) If $\bigcap_{\alpha \in I} A_{\alpha} = \emptyset$, is $\{A_{\alpha} : \alpha \in I\}$ necessarily a pairwise disjoint collection of sets?

Problem 9.4.

Show that $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Problem 9.13.

Suppose A, B, C, and D are four sets. If $A \times B \subseteq C \times D$, must $A \subseteq C$ and $B \subseteq D$? Why or why not?

Problem 9.16.

This problem introduces rigorous definitions of an ordered pair and Cartesian product. Let A be a set and $a, b \in A$. We define the ordered pair of a and b with first coordinate a and second coordinate b as

$$(a, b) = \{\{a\}, \{a, b\}\}.$$

Using this definition prove the following.

- (a) If (a, b) = (x, y), then a = x and b = y.
- (b) If $a \in A$ and $b \in B$, then $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Now we are able to define the Cartesian product of the two sets *A* and *B* as the set

$$A \times B = \{x \in \mathcal{P}(\mathcal{P}(A \cup B)) : x = (a, b) \text{ for some } a \in A \text{ and some } b \in B\}.$$

(c) Use the above definitions to prove that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

This is a pretty complicated definition. It is also not our idea, but rather an idea that was born from axioms. P. Halmos' book, [31], is an excellent reference for this subject.

- (b) $a \in A, b \in B$
- a, b \in A \cup B;
- {a}, {a,b} are subsets of A ∪ B;
- {a}, {a,b} \in P(A \cup B);
- {{a}, {a,b}} is subset of P(A ∪ B);
- $\{\{a\}, \{a,b\}\} \in P(P(A \cup B))$

- (c) $(x,y) \in A \times B$, $x \in A$ and $y \in B$;
- since $A \leq C$, $x \in C$, likewise, $y \in D$;
- $\{x\}, \{x,y\} \leq C \cup D$
- $\{x\}, \{x,y\} \in P(C \cup D)$
- $\{\{x\}, \{x,y\}\} \leq P(C \cup D)$
- $\{\{x\}, \{x,y\}\} \in P(P(C \cup D))$
- $(x,y) \in P(P(C \cup D))$
- $(x,y) \in C \times D$, by definition of $C \times D$.