Recursive Functions

Rongen Lin

Nanjing University

December 12, 2019

Why we study it?

- Computability theory
- Number theory
- Proof theory

Primitive Recursive Functions

Computable

Computable

A given function g is said to be computable if it "can be computed by some program".

Primitive Recursive Functions

Definition

Primitive Recursive Functions

A function is called primitive recursive if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

$$
\begin{aligned}
& \text { Initial functions } \\
& \text { Constant function: } n(x)=0 \\
& \text { Successor function: } S(x)=x+1 \\
& \text { Projection function: } P_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
\end{aligned}
$$

Primitive Recursive Functions

Composition

Composition

Let f be a function of k variables and let g_{1}, \ldots, g_{k} be functions of n variables. Let

$$
h\left(x_{1}, \ldots, x_{n}\right)=f\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Then h is said to be obtained from f and g_{1}, \ldots, g_{k} by composition.

```
Theorem I
If h is obtained from the computable functions f, g},\ldots,,\mp@subsup{g}{k}{}\mathrm{ by composition, then \(h\) is computable.
```


Primitive Recursive Functions

Recursion

Recursion I

Suppose k is some fixed number and

$$
\begin{gathered}
h(0)=k \\
h(t+1)=g(t, h(t))
\end{gathered}
$$

then h is said to be obtained from g by recursion.

Recursion II

$$
\begin{gathered}
h\left(x_{1}, \ldots, x_{n}, 0\right)=f\left(x_{1}, \ldots, x_{n}\right) \\
h\left(x_{1}, \ldots, x_{n}, t+1\right)=g\left(t, h\left(x_{1}, \ldots, x_{n}, t\right), x_{1}, \ldots, x_{n}\right) .
\end{gathered}
$$

Theorem II
Let h be obtained from g (and f), and let g (and f) be computable. Then h is also computable.

Primitive Recursive Functions

Theorems

Theorem III
Every primitive recursive function is computable.

Theorem IV
Not all computable functions are primitive recursive.

Primitive Recursive Functions

Examples

$x+y$

The recursion equations for $f(x, y)=x+y$ are

$$
\begin{gathered}
f(x, 0)=x \\
f(x, y+1)=f(x, y)+1
\end{gathered}
$$

We can rewrite these equations as

$$
\begin{gathered}
f(x, 0)=P_{1}^{1}(x) \\
f(x, y+1)=S\left(P_{2}^{3}(y, f(x, y), x)\right)
\end{gathered}
$$

Primitive Recursive Functions

Examples

$x \cdot y$

The recursion equations for $f(x, y)=x \cdot y$ are

$$
\begin{gathered}
f(x, 0)=0 \\
f(x, y+1)=f(x, y)+x
\end{gathered}
$$

We can rewrite these equations as

$$
\begin{gathered}
f(x, 0)=n(x) \\
f(x, y+1)=g\left(P_{2}^{3}(y, f(x, y), x), P_{3}^{3}(y, h(x, y), x)\right)
\end{gathered}
$$

Here $g\left(x_{1}, x_{2}\right)$ is $x_{1}+x_{2}$.

Primitive Recursive Functions

Examples

x !
The recursion equations for $h(x)=x$! are

$$
\begin{gathered}
0!=1 \\
(x+1)!=x!\cdot S(x)
\end{gathered}
$$

We can rewrite these equations as

$$
\begin{gathered}
h(0)=1 \\
h(t+1)=g(t, h(t)) \\
g\left(x_{1}, x_{2}\right)=S\left(x_{1}\right) \cdot x_{2}
\end{gathered}
$$

Primitive Recursive Functions

Examples

$P(x)$
The predecessor function $P(x)$ is defined as follows:

$$
P(x)= \begin{cases}x-1 & x \neq 0 \\ 0 & x=0\end{cases}
$$

The recursion equations for $P(x)$ are

$$
\begin{gathered}
P(0)=0 \\
P(t+1)=t
\end{gathered}
$$

Primitive Recursive Functions

Examples

$x-y$

The function $x-y$ is defined as follows:

$$
x \dot{-} y= \begin{cases}x-y & x \geq y \\ 0 & x<y\end{cases}
$$

The recursion equations for $x-y$ are

$$
\begin{aligned}
x \dot{-} 0 & =x \\
x \dot{-}(t+1) & =P(x \dot{-} t)
\end{aligned}
$$

Primitive Recursive Functions

Examples

$|x-y|$
$|x-y|$ is primitive recursive since

$$
|x-y|=(x \dot{-} y)+(y \dot{-} x) .
$$

Primitive Recursive Functions

Examples
$\alpha(x)$
The function $\alpha(x)$ is defined as follows:

$$
\alpha(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}
$$

$\alpha(x)$ is primitive recursive since

$$
\alpha(x)=1 \dot{-} x
$$

Or we can simply write the recursion equations:

$$
\begin{gathered}
\alpha(0)=1 \\
\alpha(t+1)=0 .
\end{gathered}
$$

Primitive Recursive Functions

Examples

```
\neg X
```

$$
\neg P=\alpha(P)
$$

$$
x \wedge y
$$

$x \vee y$

$$
x \vee y=\neg(\neg x \wedge \neg y)
$$

Primitive Recursive Functions

Examples

$$
x=y
$$

$$
d(x, y)= \begin{cases}1 & x=y \\ 0 & x \neq y\end{cases}
$$

It is primitive recursive since

$$
d(x, y)=\alpha(|x-y|)
$$

$$
\begin{aligned}
& x \neq y \\
& e(x, y)=\alpha(d(x, y))
\end{aligned}
$$

$$
x \leq y
$$

$$
\alpha(x \dot{-} y)
$$

```
x<y
```

$$
\neg(y \leq x)
$$

Primitive Recursive Functions

Examples

If-Else

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{n}\right) & P\left(x 1, \ldots, x_{n}\right) \\ h\left(x_{1}, \ldots, x_{n}\right) & \text { otherwise }\end{cases}
$$

It is primitive recursive because

$$
f(\ldots)=g\left(x_{1}, \ldots, x_{n}\right) \cdot P\left(x_{1}, \ldots, x_{n}\right)+h\left(x_{1}, \ldots, x_{n}\right) \cdot \alpha\left(P\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Primitive Recursive Functions

Examples

Σ

The function $h\left(x_{1}, \ldots, x_{n}, m\right)$ is defined as follows:

$$
h\left(x_{1}, \ldots, x_{n}, m\right)=\sum_{i=0}^{m} f\left(x_{1}, \ldots, x_{n}, i\right)
$$

The recursion equations are

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{n}, 0\right)=f\left(x_{1}, \ldots, x_{n}, 0\right) \\
& h\left(x_{1}, \ldots, x_{n}, y+1\right)= g\left(h\left(x_{1}, \ldots, x_{n}, y\right), f\left(x_{1}, \ldots, x_{n}, y+1\right)\right), \\
& g(x, y)=x+y .
\end{aligned}
$$

Primitive Recursive Functions

Examples

A complicated example

The function g is defined as follows:

$$
g\left(x, k_{1}, \ldots, k_{r}, C_{1}, \ldots, C_{r}, f\right)= \begin{cases}f(x) & \nexists i: k_{i}=x \\ C_{i} & \exists i: k_{i}=x\end{cases}
$$

It is primitive recursive since

$$
g\left(x, k_{1}, \ldots, k_{r}, C_{1}, \ldots, C_{r}, f\right)=f(x) \alpha\left(\sum_{i=1}^{r} d\left(x, k_{i}\right)\right)+\sum_{i=1}^{r} C_{i} d\left(x, k_{i}\right)
$$

Primitive Recursive Functions

Examples

Forall

$$
(\forall t)_{\leq y} P\left(t, x_{1}, \ldots, x_{n}\right) \Leftrightarrow\left[\prod_{t=0}^{y} P\left(t, x_{1}, \ldots, x_{n}\right)\right]=1
$$

Exist

$$
(\exists t)_{\leq y} P\left(t, x_{1}, \ldots, x_{n}\right) \Leftrightarrow\left[\sum_{t=0}^{y} P\left(t, x_{1}, \ldots, x_{n}\right)\right] \neq 0
$$

Minimalization

$$
g\left(y, x_{1}, \ldots, x_{n}\right)=\sum_{u=0}^{y} \prod_{i=0}^{u} \alpha\left(P\left(t, x_{1}, \ldots, x_{n}\right)\right)
$$

$\min _{t \leq y} P\left(t, x_{1}, \ldots, x_{n}\right)= \begin{cases}g\left(y, x_{1}, \ldots, x_{n}\right) & \text { if }(\exists t)_{\leq y} P\left(t, x_{1}, \ldots, x_{n}\right) \\ 0 & \text { otherwise }\end{cases}$
$\operatorname{Prime}(x) \quad p_{n} \quad\left\lfloor\frac{x}{y}\right\rfloor \quad x \bmod y \quad \phi(x) \quad \mu(x) \ldots$

Primitive Recursive Functions

Theorem IV

Not all computable functions are primitive recursive.
The PR functions of one argument can be computably enumerated.
This means that we can use some Gödel numbering to encode definitions of PR function as numbers. Let f_{n} denote the n-th unary PR function. Now define the function ev by $e v(i, j)=f_{i}(j)$. Suppose ev were PR, then the function g defined by $g(i)=S(\operatorname{ev}(i, i))$ would also be PR. But there is some number n such that $g=f_{n}$, then

$$
g(n)=S(e v(n, n))=S\left(f_{n}(n)\right)=S(g(n))
$$

gives a contradiction. So ev is not PR.

μ-recursive function

Definition

μ-recursive function

The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They includes the initial functions and is closed under composition, primitive recursion and the μ operator.

μ-recursive function

Definition

Minimization

$$
\begin{aligned}
\mu(f)\left(x_{1}, \ldots, x_{k}\right)=z \Longleftrightarrow & f\left(i, x_{1}, \ldots, x_{k}\right)>0 \quad \text { for } i=0, \ldots, z-1 . \\
& f\left(z, x_{1}, \ldots, x_{k}\right)=0
\end{aligned}
$$

μ-recursive function

Comparison

- The μ-recursive functions are closely related to PR functions, and their inductive definition builds upon that of the PR functions.
- The PR functions are a subset of the μ-recursive functions.

μ-recursive function

Ackermann function

Definition

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

Its value grows rapidly, even for small inputs. For example, $A(4,2)$ is an integer of 19729 decimal digits (equivalent to $2^{65536}-3$). Since the function $f(n)=A(n, n)$ grows very rapidly, its inverse function, f^{-1}, grows very slowly. This inverse Ackermann function f^{-1} is usually denoted by α. This inverse appears in the time complexity of some algorithms, such as the disjoint-set data structure and Chazelle's algorithm for minimum spanning trees.

μ-recursive function

Ackermann function

Theorem V
the Ackermann function is not primitive recursive.

μ-recursive function

Ackermann function

Lemma I

$$
A(m, n) \geq n+1
$$

Definition of Ackermann functions

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

Proof.

$$
\begin{gathered}
A(0, n)=n+1 \geq n+1 \\
A(m+1,0)=A(m, 1) \geq 1+1>0+1 \\
A(m+1, n+1)=A(m, A(m+1, n)) \geq A(m+1, n)+1 \geq(n+1)+1
\end{gathered}
$$

μ-recursive function

Ackermann function

Lemma II

$$
A(m, n+1)>A(m, n)
$$

Definition of Ackermann functions

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

Proof.

$$
\begin{gathered}
A(0, n+1)=n+2 \geq n+1=A(0, n) \\
A(m+1, n+1)=A(m, A(m+1, n))>A(m+1, n)
\end{gathered}
$$

μ-recursive function

Ackermann function
Lemma III

$$
A(m+1, n) \geq A(m, n)
$$

Definition of Ackermann functions

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } m>0 \text { and } n=0 \\ A(m-1, A(m, n-1)) & \text { if } m>0 \text { and } n>0\end{cases}
$$

Proof.

$$
\begin{gathered}
A(m+1, n) \geq n+2 \\
A(m+1, n+1)=A(m, A(m+1, n))>A(m, n+1)
\end{gathered}
$$

Corollary

$$
f\left(m_{1}, n_{1}\right)>f(m, n) \quad \text { when } \quad m_{1}>m, n_{1} \geq n .
$$

μ-recursive function

Ackermann function

Lemma IV

For any PR function $g\left(x_{1}, \ldots, x_{k}\right)$, we have

$$
\exists m:\left(\forall a_{1} \ldots, a_{k}: g\left(a_{1}, \ldots, a_{k}\right)<A(m, u)\right)
$$

where $u=\max \left\{a_{1}, \ldots, a_{k}\right\}$.
Proof.

$$
\begin{gathered}
n(n)=0<n+1=A(0, n) . \\
S(n)=n+1<n+2=A(1, n) . \\
P_{m}^{k}\left(x_{1}, \ldots, x_{k}\right)=x_{m}<u+1=A(0, u) . \\
g(\ldots)<A\left(m_{0}, \max \left\{A\left(m_{1}, u\right), \ldots, A\left(m_{r}, u\right)\right\}\right) \leq A(\tilde{m}, A(\tilde{m}, u)) \\
<A(\tilde{m}, A(\tilde{m}+1, u))=A(\tilde{m}+1, u+1) \leq A(\tilde{m}+2, u) . \\
h(t)<A(m, t), g(x)<A(m+1, x), \\
g(x+1)=h(g(x))<A(m, g(x))<A(m, A(m+1, x))=A(m+1, x+1), \\
A(m+1, x) \leq A(m+1, u) .
\end{gathered}
$$

μ-recursive function

Ackermann function
Theorem V
the Ackermann function is not primitive recursive.

Proof.

Suppose $A(m, n)$ is PR , there exists m_{0} that

$$
\begin{aligned}
& \qquad A(m, n)<A\left(m_{0}, \max \{m, n\}\right) \\
& \text { Let } m=n=m_{0} \text {, then } A\left(m_{0}, m_{0}\right)<A\left(m_{0}, m_{0}\right) \text { gives a contradiction. }
\end{aligned}
$$

The Founding(Primitive) Titan must brainwash people by Primitive Recursive functions.

