A glimpse of Cantor's Paradox Open Topic 1-8-2

谢乃容

jujianai@hotmail.com

2017年11月30日

Naïve set theory

Theorem (Naïve set theory)

Set: The colleciton of elements that satisfise certain property.

Cantor's Paradox

Paradox

There is a greatest cardinal number.

Cardinal Number

Definition (Cardinal Number)

Cardinal number is: natural number used to measure the size of set.

Note

For a set S, denote that |S| is the cardinality of S. (See also: Von Neumann cardinal assignment)

Comic

Comic

The Pigeonhole Principle

Theorem (The Pigeonhole Principle)

- (i) $|A| > |B| \Rightarrow \forall f : A \to B$, f is not one-to-one.
- (ii) $|A| < |B| \Rightarrow \forall f : A \to B$, f is not onto.
- (iii) $\exists f: A \to B, \ f \text{ is both one-to-one and onto} \Rightarrow |A| = |B|.$

Cantor's Theorem

E.S. Theorem 24.4 (Cantor's Theorem)

Let S be a set, then $f: S \to 2^S(\mathcal{P}(S)) \Rightarrow f$ is not onto.

Comic

Disproof of Cantor's paradox

Disproof

- (i) There is a greatest cardinal number. Let it be C and we have the set S such that |S|=C.
- (ii) Defined by the von Neumann formulation of cardinality, Since S is a set, then there exists its power set 2^S .
- (iii) According to Cantor's Theorem, $|S| < |2^S|$. $\Rightarrow \Leftarrow$

Cantor's Paradox

Theorem

There is no greatest cardinal number.