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Algorithm 5.3.6.1. RSMS (RANDOM SAMPLING FOR MAX-SAT)

Input: A Boolean formula & over the set of variables {z,,...,z,}, n € IN,
Step 1: Choose uniformly at random a;,...,a, € {0,1}.

Step 2: output(a,...,a,).

Qutput: an assignment to {x1,...,Z,}.
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Algorithm 5.3.6.2. RRRMS (RELAXATION WITH RANDOM ROUNDING FOR

MAX-SAT)

Input:
Step 1:

Step 2:

Step 3:

Aformula ®=Fy AFy A+ A Fpover X = {z1,...,2.} in CNF,
n,m € IN.

Formulate the MAX-SAT problem for & as the integer linear program
LP(®) maximizing )", z; by the constraints (5.19) and (5.20).
Solve the relaxed version of LP(®) according to (5.21). Let a(z,),

a(22), ..., e(zm), a(y1), ..., a(yn) € [0,1] be an optimal solution
of the relaxed LP(®).
Choose 1 values vy, ..., Yn uniformly at random from [0, 1].

for i =1to ndo

if v; € [0,(y;)] then set z; =1

else set x; = 0
{Observe that Step 3 realizes the random choice of the value 1 for z;
with the probability a(y;).}

Output: An assignment to X.
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maximize sz-
j=1

subject to Y wi+ Z (1—y) >z Vi€ {l,...,m} (5.19)
ieInt(F;) tein—(F;)

where y;,z; € {0,1} for all i € {1,..., n},j€{1,...,m}. (5.20)



Lemma 5.3.6.3. Let k be a positive integer, and let F; be a clause of &
with k literals. Let a(y1), ..., a(yn),a(z1), ..., a(2y) be the solution of LP(®P)
by RRRMS. The probability that the assignment computed by the algorithm
RRRMS satisfies F; is at least

(1 - (1 - %)k) alz;).

Proof. Since one considers the clause F; independently from other clauses, one
can assume without loss of generality that it contains only uncomplemented
variables and that it is of the form x1 V 22 V -+ -V z4. By the constraint (5.19)
of LP(®) we have
N+ye -ty > 2. (5.23)
The clause F}; remains unsatisfied if and only if all of the variables y,, ¥z, . .., y&
are set to zero. Following Step 3 of RRRMS and the fact that each variable
is rounded independently, this occurs with probability
k
[Ta-a@).
=1

So, F; is satisfied by the output of RRRMS with probability

k
1— _1'[(1 — a(y))- (5.24)

Under the constraint (5.23), (5.24) is minimized when a(y;) = a(z;)/k for all
i=1,...,k. Thus,
k
Prob(F; is satisfied) > 1 — H(l — a(z;)/k). (5.25)
i=1

To complete the proof it suffices to show, for every positive integer k, that

fry=1—(1-r/k) > (1 - (1 - %)k) r=g(r) (5.26)

for every r € [0,1] (and so for every a(z;)). Since f is a concave function in
r, and g is a linear function in r (Fig. 5.4), it suffices to verify the inequality
at the endpoints r = 0 and r = 1. Since f(0) = 0 = g¢(0) and f(1) =
1-(1- lfk)k = g(1), the inequality (5.26) holds. Setting r = a(z;) in (5.26)
and inserting (5.26) into (5.25) the proof is done. a
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Algorithm 5.3.7.1. SCHONING'S ALGORITHM

Input: A formula F' in 3CNF over a set of n Boolean variables.
Step 1: K :=0;
UPPER := [20-/3mn- (3)"]
S := FALSE.
Step 2: while K < UPPER and S := FALSE do
begin K := K+ 1;
Generate uniformly at random an assignment a € {0, 1}™;
if F is satisfied by « then S:= TRUE;
M:=10
while M < 3n and S = FALSE do
begin M := M + 1;
Find a clause C that is not satisfied by a;
Pick one of the literals of C' at random, and flip its value
in order to get a new assignment a;
if F is satisfied by a then S := TRUFE
end
end

Step 3: if S = TRUFE output “F is satisfiable”
else output “F is not satisfiable”.
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Now we analyze the failure probability of SCHONING’S ALGORITHM for a
given formula F' in 3CNF. If F is not satisfiable, then the algorithm outputs
the right answer with certaincy.

Now consider that F' is satisfiable. Let @™ be an assignment that satisfies
F. Let p be the probability that one local search procedure that executes at
most 3n local steps from a random assignment generates a*. Obviously, p is a
lower bound on finding an assignment that satisfies ' in one run of the local
search procedure (the inner cycle while in Step 2). The crucial point of this
analysis is to show that

1 3\"

pzzm (4) . (5.32)

The main idea behind is that the number UPPER > p of independent
attempts is sufficient to increase the probability of success to 1 —e™1".

In what follows we consider the distance between two assignments a and
3 as the number of bits in which @ and 3 differ (i.e., the number of flips that
the local search needs to move from « to ). Now, partition all assignments
from {0,1}" into n + 1 classes

Class(j) = {8 € {0,1}"| distance(a*, B) = 5}

according to their distance j to a* for 7 = 0,1, ..., n. Obviously, |Class(j)| =
("), and the probability to uniformly generate an assignment from Class(})

J
P = (:) / 2", (5.33)

at random 1is exactly
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Now let us analyze the behavior of the local search. If & € Class(j) does
not satisfy F', then there exists at least one clause C that is not satisfied by
a. Since a* satisfies C. there exists a variable that occurs in C and whose
flipping results in a 3 € Class(j — 1). Thus, there exists a possibility to get
an assignment 3 with a smaller distance to a than distance(a*, ). Since
C' consists of at most three literals and the algorithm chooses one of them
randomly, we have a probability of at least 1/3 “to move in the direction” to
a* (to decrease the distance to a* by 1) in one step (i.e., we have a probability
of at most 2/3 to increase the distance to a* by 1 in one step). Let, for all
i,4, 1 < j < mn, g, denote the probability to reach &* from an a € Class(j)
by 7 + ¢ moves in the direction to a* and i moves from the direction of o
(i.e., in overall j + 2i steps). Then

o fit2y 1Y r2y
=\ J jy2 \3 3

can be established by a short combinatarial calculation.”™ Obviously, the prob-
ability ¢; to reach a* from an « € Class(j) is at least Y _7_, ¢;.:. Observe that
SCHONING’S ALGORITHM allows 3n steps and so j + 2i steps can be executed
for all j € {0,1,...,n} and i < j. Thus,

S J+2i i T o2y
q4; = i ) J+2 ) 5 ) § 7 Not.e that (7£%) - sz is the number of different paths from « € Class(j) to
=0 a* where a path is determined by a word over the two-letter alphabet {+, -}
1 7 2; 1 J+i 2 i where + means a movement in the direction to a* and — means a movement that
> = Z J + i - N increases the distance to a®. Every such word must satisfy that each suffix of w
-3 3 3 contains more + symbols than — symbols.
i=0
2 .
L 1(3 INY /2y
3\ 3 3/
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Now we are ready to perform the final calculation for p. Clearly,

m
p=2 ZFJ’ g5
3=0

10
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The crucial
point is that the probability of success in one attempt is at least 1/ Exrp(n), where
Exp(n) is an exponential function that grows substantially slower than 2”. Thus,
performing O( Ezp(n)) random attempts one can find a satisfying assignment with
a probability almost 1 in time O(|F| - n - Ezp(n)).
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