- 教材讨论
 - -JH第5章第3节第6、7小节

问题1: RSMS

- RSMS要解决的问题是什么?
- 基本思路是什么?
- 近似比是多少? 为什么?
- 对于不同的输入,效果的优劣分别如何?为什么?

Algorithm 5.3.6.1. RSMS (RANDOM SAMPLING FOR MAX-SAT)

Input: A Boolean formula Φ over the set of variables $\{x_1, \ldots, x_n\}$, $n \in \mathbb{N}$.

Step 1: Choose uniformly at random $\alpha_1, \ldots, \alpha_n \in \{0, 1\}$.

Step 2: $\mathbf{output}(\alpha_1, \ldots, \alpha_n)$.

Output: an assignment to $\{x_1, \ldots, x_n\}$.

问题2: RRRMS

- RRRMS的基本思路是什么?
- MAX-SAT是如何被先后规约为ILP和LP的?
- 引理5.3.6.3证明的基本过程是什么?
- 对于不同的输入,效果的优劣分别如何?为什么?

Algorithm 5.3.6.2. RRRMS (RELAXATION WITH RANDOM ROUNDING FOR MAX-SAT)

```
Input: A formula \Phi = F_1 \wedge F_2 \wedge \cdots \wedge F_m over X = \{x_1, \dots, x_n\} in CNF, n, m \in \mathbb{N}.
```

- Step 1: Formulate the MAX-SAT problem for Φ as the integer linear program $LP(\Phi)$ maximizing $\sum_{j=1}^{m} z_j$ by the constraints (5.19) and (5.20).
- Step 2: Solve the relaxed version of $LP(\Phi)$ according to (5.21). Let $\alpha(z_1)$, $\alpha(z_2)$, ..., $\alpha(z_m)$, $\alpha(y_1)$, ..., $\alpha(y_n) \in [0,1]$ be an optimal solution of the relaxed $LP(\Phi)$.
- Step 3: Choose n values $\gamma_1, \ldots, \gamma_n$ uniformly at random from [0,1]. for i=1 to n do $\text{if } \gamma_i \in [0,\alpha(y_i)] \text{ then set } x_i=1 \\ \text{else set } x_i=0 \\ \{\text{Observe that Step 3 realizes the random choice of the value 1 for } x_i \\ \text{with the probability } \alpha(y_i).\}$

Output: An assignment to X.

问题2: RRRMS (续)

maximize
$$\sum_{j=1}^{m} z_{j}$$

subject to $\sum_{i \in In^{+}(F_{j})} y_{i} + \sum_{i \in In^{-}(F_{j})} (1 - y_{i}) \geq z_{j} \ \forall j \in \{1, \dots, m\} \ (5.19)$
where $y_{i}, z_{j} \in \{0, 1\}$ for all $i \in \{1, \dots, n\}, j \in \{1, \dots, m\}$. (5.20)

Lemma 5.3.6.3. Let k be a positive integer, and let F_j be a clause of Φ with k literals. Let $\alpha(y_1), \ldots, \alpha(y_n), \alpha(z_1), \ldots, \alpha(z_m)$ be the solution of $LP(\Phi)$ by RRRMS. The probability that the assignment computed by the algorithm RRRMS satisfies F_i is at least

$$\left(1-\left(1-rac{1}{k}
ight)^k
ight)\cdotlpha(z_j).$$

Proof. Since one considers the clause F_j independently from other clauses, one can assume without loss of generality that it contains only uncomplemented variables and that it is of the form $x_1 \vee x_2 \vee \cdots \vee x_k$. By the constraint (5.19) of $LP(\Phi)$ we have

$$y_1 + y_2 + \dots + y_k \ge z_j.$$
 (5.23)

The clause F_j remains unsatisfied if and only if all of the variables y_1, y_2, \ldots, y_k are set to zero. Following Step 3 of RRRMS and the fact that each variable is rounded independently, this occurs with probability

$$\prod_{i=1}^k \left(1 - \alpha(y_i)\right).$$

So, F_i is satisfied by the output of RRRMS with probability

$$1 - \prod_{i=1}^{k} (1 - \alpha(y_i)). \tag{5.24}$$

Under the constraint (5.23), (5.24) is minimized when $\alpha(y_i) = \alpha(z_j)/k$ for all i = 1, ..., k. Thus,

$$Prob(F_j \text{ is satisfied}) \ge 1 - \prod_{i=1}^k (1 - \alpha(z_j)/k).$$
 (5.25)

To complete the proof it suffices to show, for every positive integer k, that

$$f(r) = 1 - (1 - r/k)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot r = g(r)$$
 (5.26)

for every $r \in [0,1]$ (and so for every $\alpha(z_j)$). Since f is a concave function in r, and g is a linear function in r (Fig. 5.4), it suffices to verify the inequality at the endpoints r = 0 and r = 1. Since f(0) = 0 = g(0) and $f(1) = 1 - (1 - 1/k)^k = g(1)$, the inequality (5.26) holds. Setting $r = \alpha(z_j)$ in (5.26) and inserting (5.26) into (5.25) the proof is done.

问题2: RRRMS (续)

	一般情况(特别是短句子)	长句子
RSMS	2	$2^k/(2^k-1)$
RRRMS	e/(e-1)	$\frac{k^k}{k^k-(k-1)^k}$

- Schoening算法要解决的问题是什么?
- 基本思路是什么?时间复杂度是多少?
- 为什么是单边Monte Carlo算法?

Algorithm 5.3.7.1. Schöning's Algorithm

```
A formula F in 3CNF over a set of n Boolean variables.
Step 1: K := 0:
          UPPER := \left[20 \cdot \sqrt{3\pi n} \cdot \left(\frac{4}{3}\right)^n\right]
          S := FALSE.
Step 2: while K < UPPER and S := FALSE do
            begin K := K + 1;
               Generate uniformly at random an assignment \alpha \in \{0,1\}^n;
               if F is satisfied by \alpha then S := TRUE;
               M := 0:
               while M < 3n and S = FALSE do
                 begin M := M + 1;
                   Find a clause C that is not satisfied by \alpha:
                   Pick one of the literals of C at random, and flip its value
                   in order to get a new assignment \alpha;
                   if F is satisfied by \alpha then S := TRUE
               end
            end
Step 3: if S = TRUE output "F is satisfiable"
          else output "F is not satisfiable".
```

Now we analyze the failure probability of SCHÖNING'S ALGORITHM for a given formula F in 3CNF. If F is not satisfiable, then the algorithm outputs the right answer with certaincy.

Now consider that F is satisfiable. Let α^* be an assignment that satisfies F. Let p be the probability that one local search procedure that executes at most 3n local steps from a random assignment generates α^* . Obviously, p is a lower bound on finding an assignment that satisfies F in one run of the local search procedure (the inner cycle **while** in Step 2). The crucial point of this analysis is to show that

$$p \ge \frac{1}{2\sqrt{3 \cdot \pi \cdot n}} \cdot \left(\frac{3}{4}\right)^n. \tag{5.32}$$

The main idea behind is that the number $UPPER \gg p$ of independent attempts is sufficient to increase the probability of success to $1 - e^{-10}$.

In what follows we consider the distance between two assignments α and β as the number of bits in which α and β differ (i.e., the number of flips that the local search needs to move from α to β). Now, partition all assignments from $\{0,1\}^n$ into n+1 classes

$$Class(j) = \{\beta \in \{0,1\}^n \mid distance(\alpha^*, \beta) = j\}$$

according to their distance j to α^* for j = 0, 1, ..., n. Obviously, $|Class(j)| = \binom{n}{j}$, and the probability to uniformly generate an assignment from Class(j) at random is exactly

$$p_j = \binom{n}{j} / 2^n. \tag{5.33}$$

Now let us analyze the behavior of the local search. If $\alpha \in Class(j)$ does not satisfy F, then there exists at least one clause C that is not satisfied by α . Since α^* satisfies C, there exists a variable that occurs in C and whose flipping results in a $\beta \in Class(j-1)$. Thus, there exists a possibility to get an assignment β with a smaller distance to α than $distance(\alpha^*,\alpha)$. Since C consists of at most three literals and the algorithm chooses one of them randomly, we have a probability of at least 1/3 "to move in the direction" to α^* (to decrease the distance to α^* by 1) in one step (i.e., we have a probability of at most 2/3 to increase the distance to α^* by 1 in one step). Let, for all $i,j,i\leq j\leq n,\ q_{j,i}$ denote the probability to reach α^* from an $\alpha\in Class(j)$ by j+i moves in the direction to α^* and i moves from the direction of α^* (i.e., in overall j+2i steps). Then

$$q_{j,i} = {j+2i \choose i} \cdot rac{j}{j+2i} \cdot \left(rac{1}{3}
ight)^{j+i} \cdot \left(rac{2}{3}
ight)^{i}$$

can be established by a short combinatorial calculation.⁷¹ Obviously, the probability q_j to reach α^* from an $\alpha \in Class(j)$ is at least $\sum_{i=0}^j q_{j,i}$. Observe that SCHÖNING'S ALGORITHM allows 3n steps and so j+2i steps can be executed for all $j \in \{0,1,\ldots,n\}$ and $i \leq j$. Thus,

$$q_{j} \geq \sum_{i=0}^{j} \left[\binom{j+2i}{i} \cdot \frac{j}{j+2i} \cdot \left(\frac{1}{3}\right)^{j+i} \cdot \left(\frac{2}{3}\right)^{i} \right]$$
$$\geq \frac{1}{3} \sum_{i=0}^{j} \left[\binom{j+2i}{i} \cdot \left(\frac{1}{3}\right)^{j+i} \cdot \left(\frac{2}{3}\right)^{i} \right]$$
$$> \frac{1}{3} \binom{3j}{j} \cdot \left(\frac{1}{3}\right)^{2j} \cdot \left(\frac{2}{3}\right)^{j}.$$

Note that $\binom{j+2i}{i} \cdot \frac{j}{j+2i}$ is the number of different paths from $\alpha \in Class(j)$ to α^* where a path is determined by a word over the two-letter alphabet $\{+,-\}$ where + means a movement in the direction to α^* and - means a movement that increases the distance to α^* . Every such word must satisfy that each suffix of w contains more + symbols than - symbols.

Now we are ready to perform the final calculation for p. Clearly,

$$p \ge \sum_{j=0}^{n} p_j \cdot q_j.$$

• 你理解这句总结了吗?

The crucial

point is that the probability of success in one attempt is at least 1/Exp(n), where Exp(n) is an exponential function that grows substantially slower than 2^n . Thus, performing O(Exp(n)) random attempts one can find a satisfying assignment with a probability almost 1 in time $O(|F| \cdot n \cdot Exp(n))$.