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TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node x to a descendant leaf.

Proof.
Assume x has are two different descendant leaves a and b, and
len(x, a) > 2len(x, b)
I len(x, a) = # ⃝ in (x, a) + #⃝ in (x, a) − 1
I len(x, b) = # ⃝ in (x, b) + #⃝ in (x, b) − 1
I # ⃝ in (x, a) = lenblack(x, a) = lenblack(x, b) = # ⃝ in (x, b)
I #⃝ in (x, a) > # ⃝ in (x, a) + 2#⃝ in (x, b) − 1
I #⃝ in (x, a) ≥ # ⃝ in (x, a). Impossible!
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a descendant leaf has length at most twice that of the shortest simple
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Proof.
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TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.
I Largest: a tree with 3 three nodes and the root is the only black

one. The ratio is 2.
I Smallest: a tree with only a (black) root node. The ratio is 0
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Answer.

I Largest: a tree with 3 three nodes and the root is the only black
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I Smallest: a tree with only a (black) root node. The ratio is 0
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TC-13.3-1

In line 16 of RB-Insert, we set the color
of the newly inserted node z to red.
Observe that if we had chosen to set z’s
color to black, then property 4 of a
red-black tree would not be violated. Why
didn’t we choose to set z’s color to black?

Answer.
P5 is violated!
P5. For each node, all simple paths from
the node to descendant leaves contain the
same number of black nodes.
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TC-13.3-5

Consider a red-black tree formed by inserting n nodes with
RB-INSERT. Argue that if n > 1, the tree has at least one red node.

case 1

case 2
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child
is red

case 1 is converted into case 2,3, or 4.

if terminates, the root of the subtree
(the new x) is set to black.

transform to case 4.

the root (the new x) is set to black.
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TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?
Justify your answer.

Answer.
I NO!

100

insert 100

100

50

insert 50

50

25 100

insert 25

50

100

delete 25

RedBlack Tree Visualization
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Justify your answer.

Answer.
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100

insert 100

100

50

insert 50

50

25 100

insert 25

50

100

delete 25

RedBlack Tree Visualization

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 8 / 25

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

TC Problem 13-3 (AVL Tree)

I An algorithm for the organization of
information (1962).

I Named after 2 Russian
mathematicians:
I Georgii Adelson-Velsky
I Evgenii Mikhailovich Landis

http://www.mathnet.ru/links/e8bbcf127a4f573d00aa42a7e5cdaaba/dan26964.pdf
Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 9 / 25

http://www.mathnet.ru/links/e8bbcf127a4f573d00aa42a7e5cdaaba/dan26964.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

TC Problem 13-3 (AVL Tree)

An AVL tree is a binary search tree that is height balanced: for each
node x, the heights of the left and right subtrees of x differ by at most
1.
I To implement an AVL tree, we maintain an extra attribute in each

node: x.h is the height of node x.
I As for any other binary search tree T , we assume that T.root

points to the root node.
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TC Problem 13-3 (a) I

(a) Prove that an AVL tree with n nodes has height O(lg n). (Hint:
Prove that an AVL tree of height h has at least Fh nodes, where
Fh is the h-th Fibonacci number.)
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TC Problem 13-3 (a) II

Proof.
p(h): an AVL tree of height h has at least Fh nodes.
I (B) p(1) is obvious true.
I (H) Assume p(k) is true for all k < h

I (I) Let r be the root, r.left and r.right be the left and right
subtrees of r accordingly. |r|: number of nodes in r.
I Assume h − 2 ≤ r.left.h ≤ r.right.h = h − 1, then |r.left| ≥ Fh−2

and |r.right| ≥ Fh−1
I So,

n = |r| = |r.left| + |r.right| + 1 ≥ Fh−2 + Fh−1 + 1 ≥ Fh = ⌊ ϕh

2 + 1
2 ⌋

I h = O(lg n)
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TC Problem 13-3 (b) I

(b) To insert into an AVL tree, we first place a node into the
appropriate place in binary search tree order. Afterward, the tree
might no longer be height balanced. Specifically, the heights of the
left and right children of some node might differ by 2.
Describe a procedure Balance(x), which takes a subtree rooted
at x whose left and right children are height balanced and have
heights that differ by at most 2, i.e., |x.right.h − x.left.h| ≤ 2, and
alters the subtree rooted at x to be height balanced. (Hint: Use
rotations.)
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TC Problem 13-3 (b) II

Answer
I Given a node x�we define the balancing

factor of x as bf(x) = r.left.h − r.right.h.
I After insertion, the height balance

property (i.e.,
|bf(x)| = |r.left.h − r.right.h| ≤ 1) might
be broken.

I We have to maintain the property along
the path from the inserted node to root.

I After insertion,
|bf(x)| = |r.left.h − r.right.h| ≤ 2

I Assuming x.left.h ≥ r.right.h = 2

y

B.h − E.h = 2
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TC Problem 13-3 (b) III

I Two subcases based on the difference
between A.h and C.h:
I Case 1: A.h ≥ C.h
I case 2: A.h < C.h

y

B.h − E.h = 2
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TC Problem 13-3 (b) IV

Case 1: A.h ≥ C.h

I Assume E.h = y, then we have
B.h = y + 2
A.h = y + 1
y ≤ C.h ≤ y + 1

I Right-Rotate at D

y

B.h − E.h = 2
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TC Problem 13-3 (b) V

I A.h, C.h, E.h keep unchanged, and
0 ≤ C.h − E.h ≤ 1
y + 1 ≤ D.h = max (C.h, E.h) + 1 = C.h + 1 ≤ y + 2
0 ≤ D.h − A.h ≤ 1

I So, |bf(B)| ≤ 1 and |bf(D)| ≤ 1
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TC Problem 13-3 (b) VI

Case 2: A.h < C.h

I Assume E.h = y, then we have
B.h = y + 2
C.h = y + 1
A.h = y

I Left-Rotate at B

I Rigth-Rotate at D

y

B.h − E.h = 2
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TC Problem 13-3 (b) VII

I A.h, E.h keep unchanged, and

y − 1 ≤ B.right.h, D.left.h ≤ y
0 ≤ A.h−B.right.h ≤ 1
0 ≤ E.h−D.left.h ≤ 1
B.h = max (A.h, B.right.h) + 1 = y + 1
D.h = max (E.h, D.left.h) + 1 = y + 1
B.h = D.h

I So, |bf(B)| ≤ 1, |bf(C)| ≤ 1 and |bf(D)| ≤ 1
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TC Problem 13-3 (b) VIII
Proof.
Balance(x)

1: procedure Balance(x)
2: if |bf(x)| = 2 then
3: if bf(x) > 0 then
4: if x.left.left.h ≥ x.left.right.h then
5: Right-Rotate(x)
6: else
7: Left-Rotate(x.left)
8: Right-Rotate(x)
9: else

10: if x.right.right.h ≥ x.right.left.h then
11: Left-Rotate(x)
12: else
13: Right-Rotate(x.right)
14: Left-Rotate(x)
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TC Problem 13-3 (c) I

(c) Using part (b), describe a recursive procedure AVL-Insert(x, z)
that takes a node x within an AVL tree and a newly created node
z (whose key has already been filled in), and adds z to the subtree
rooted at x, maintaining the property that x is the root of an AVL
tree.
Assume that z.key has already been filled in and that z.left= NIL
and z.right=NIL; also assume that z.h = 0. Thus, to insert the
node z into the AVL tree T , we call AVL-Insert(T.root, z).
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TC Problem 13-3 (c) II

AVL-Insert(x, z)

1: procedure AVL-Insert(x,z)
2: if x.key > z.key then
3: if x.left ̸=Nil then
4: AVL-Insert(x.left,z)
5: else
6: x.left← z

7: else if x.key > z.key then
8: if x.right ̸=Nil then
9: AVL-Insert(x.right,z)

10: else
11: x.right← z

12: Balance(x)
13: x.h← max (x.left.h, x.right.h) + 1
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TC Problem 13-3 (d) I

(d) Show that AVL-Insert, run on an n-node AVL tree, takes O(lg n)
time and performs O(1) rotations.
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TC Problem 13-3 (d) II

1: procedure AVL-Insert(x,z)
2: if x.key > z.key then
3: if x.left ̸=Nil then
4: AVL-Insert(x.left,z)
5: else
6: x.left← z

7: else if x.key > z.key then
8: if x.right ̸=Nil then
9: AVL-Insert(x.right,z)

10: else
11: x.right← z

12: Balance(x)
13: x.h← max (x.left.h, x.right.h) + 1

I AVL-Insert is called recursively at most h = lg n times;
I Only one call to Balance actually involves rotation.
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TC Problem 13-3 (?)

(1) How to implement AVL-Delete with Balance?
(2) What is the time complexity of AVL-Delete.
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