2-15 Red-black Tree

Jun Ma (majun@nju.edu.cn)

Jun Ma

majun@nju.edu.cn

September 16, 2020

2-15 Red-black Tree September 16, 2020

1/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Jun Ma (majt u.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

» len(x,b) =# O in (z,b) + #O) in (x,b) — 1

.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> len() #O in (l‘»b)+#o in (l‘,b)—l

> #(O in (l‘, a’) = lenblack('ra a) = lenblack(gjv b) =#0 in (:C, b)

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(xz,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

» len(x,b) =# O in (z,b) + #O) in (x,b) — 1
> #(O in (l‘,a) = lenblack('raa) = lenblack(gjv b) =#0 in (:C,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.

Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> (,0) =# O in (z,b) + #O in (x,b) — 1
> # O in (z,a) = lenpack (T, a) = lenpaer(2,0) = # O in (z,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1
> #O in (z,0) 2 # O in (,a).

len

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

-
TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.

Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> len(z,b) =# O in (z,b) + #0O in (z,b) — 1
> # O in (z,a) = lenpack (T, a) = lenpaer(2,0) = # O in (z,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1
» #(Oin (z,a) > # O in (z,a). Impossible!

len

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 2/25

TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Jun Ma (majun@nju.edu.cn)

2-15 Red-black Tree September 16, 2020 3/25

-
TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 3/25

-
TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.

> Largest: a tree with 3 three nodes and the root is the only black
one. The ratio is 2.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 3/25

-
TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.

> Largest: a tree with 3 three nodes and the root is the only black
one. The ratio is 2.

» Smallest: a tree with only a (black) root node. The ratio is 0

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 3/25

-
TC-13.3-1

In line 16 of RB-INSERT, we set the color
of the newly inserted node z to red.
Observe that if we had chosen to set z’s
color to black, then property 4 of a
red-black tree would not be violated. Why

didn’t we choose to set z’s color to black?

Jun Ma (maju u.edu.cn) 2-15 Red-black Tree

RB-INSERT(T, 2)

|

W o

(S, N

[eBEN o)}

11
12
13
14
15
16
17

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = x.left
else x = x.right
Lp=y
if y == T.nil
T.root = 7
elseif z.key < y.key
y.left =z
else y.right = z
left = T.nil
.right = T.nil
.color = RED
RB-INSERT-FIXUP(T,)

I

SN

September 16, 2020 4/25

-
TC-13.3-1

In line 16 of RB-INSERT, we set the color
of the newly inserted node z to red.
Observe that if we had chosen to set z’s
color to black, then property 4 of a
red-black tree would not be violated. Why
didn’t we choose to set z’s color to black?

4

Answer.

P5 is violated!

P5. For each node, all simple paths from
the node to descendant leaves contain the
same number of black nodes.

U

y

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree

RB-INSERT(T, 2)

|

W o

(S, N

[eBEN o)}

11
12
13
14
15
16
17

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = 7
elseif z.key < y.key
y.left =z
else y.right = z
left = T.nil
.right = T.nil
.color = RED
RB-INSERT-FIXUP(T,)

I

SN

September 16, 2020 4/25

-
TC-13.3-5

Consider a red-black tree formed by inserting n nodes with
RB-INSERT. Argue that if n > 1, the tree has at least on

e red node. J

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

9
10
11
12
13
14
15

while z.p.color == RED
ifz.p==z.p.p.left
y = z.p.p.right

if y.

else i

color == RED

z.p.color = BLACK
y.color = BLACK

z.p.p.color = RED

Z p.p

. z.p.right
z=2z.p

-
=
2

LEFT-ROTATE(T, z)

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T, z.p.p)

else (same as then clause
with “right” and “left” exchanged)
16 T.root.color = BLACK

-
TC-13.3-5

Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil
z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

e

11
12
13
14
15

while z.p.color == RED
ifz.p==z.p.p.left
YV = z.p.p.right

case 1

if y.

color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z Z.p.p

else

T.root.color

-
&
1

i z.p.right

z=2z.p

LEFT-ROTATE(T, z)

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T, z.p.p)
else (same as then clause

with “right” and “left” exchanged)

= BLACK

-
TC-13.3-5

Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

e

11
12
13
14
15

while z.p.color == RED case 1
ifz.p==z.p.p.left
v = Z.p.p.right
if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
I =2pp
elseif Z
T=2zap cgse 2

LEFT-ROTATE(T, 2),

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T. z.p.H)

else (same as then clause

T.root.color

with “right” and “left” exchanged)

= BLACK

-
TC-13.3-5

Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17

RB-INSERT-FIXUP(T, z)

Jun Ma (majunc

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

9
10
11
12
13
14
15

while z.p.color == RED

ifz.p==z.p.p.left
Yy = Z.p.p.right

case 1

if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z Z.p.p

else

z=2z.p
LEFT-ROTATE(T, 2),
z.p.color = BLACK
Z.p.p.color = RED
RIGHT-ROTATE(T. 2.p. 1)

cdse 2

else (same as then clause
with “right” and “left” exchanged)

16 | T.root.color = BLACK

2-15 Red-black Tree

September 16, 2020

5/25

TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree

must be black.

RB-DELETE(T. 2)

1

2

3

4

5 RB-TRANSPLANT(T, 2, z.right)
6 elseif oht == T.nil

7 X = z.left

8 RB-TRANSPLANT(T, left)
9 else y = TREE-MINIMUM(: oht)
10 y-original-color = y.color

11 x = y.right

12

13

14

15 2

16 v.right.p = y

17 RB-TRANSPLANT(T, z. V)

18 V. left eft

19 y.left.p 4

20 y.color = z.color

21 if y-original-color == BLACK

22 RB-DELETE-FIXUP(T. x)

RB-DELETE-FIXUP(T. x)

23

2-15 Red-black Tree

while x # T.root and x.color == BLACK
if x == x.p.left

w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T, x.p)
w = x.p.right
if w.left. color == BLACK and w.right.color == BLACK
color = RED
x.p
else if w.right.color == BLACK
w.left.color = BLACK
w.color = RED

w.

X

RIGHT-ROTATE(T, w)
w = right
w.color .p.color

x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)

x = T.root

else (same as then clause with “right” and “left” exchanged)
xX.color = BLACK

// case 1
// case 1
// case 1
// case 1

// case 2
// case 2

// case 3
// case 3
// case 3
// case 3
// case 4
// case 4
// case 4
// case 4
// case 4

September 16, 2020

6/25

-
TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP(T, x)

Case 1:

I while x # T.root and x.color == BLACK 2’s sibling w is red

2 if x == x.p.left

3 w = x.p.right

4 if w.color == RED

5 w.color = BLACK /Ml case 1 Case 2:

6 X.p.color = RED M case 1 p5 sibling w is black, and both of
7 LEFT-ROTATE(T x.p) // case 1 ’s children are black

8 w = x.p.right // case 1

9 if w.left.colo BLACK and w.right.color == BLACK

10 olor = RED M case 2

:71 else if w.right.color ez Case . 3:, .

13 ur‘lkﬁ color // case 3 z’§ Sll?hng w is black, Aw’s lefp .
b e ¥ child is red, and w’s right child is black
14 w.color = RED // case 3

15 RIGHT-ROTATE(T, w) // case 3

16 w = x.p.right // case 3

17 w.color = x.p.color // case 4 Case 4:

18 x.p.color = BLACK // case4 a’s sibling w is black, and w’s right child
19 w.right.color = BLACK / case 4 1s re
20 LEFT-ROTATE(T. x.p) // case 4
21 x = T.root / case 4

22 else (same as then clause with “right” and “left” exchanged)

23 x.color = BLACK

-
TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP(T, x)

1
2
3
4
5

o

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red

-
TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

o

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red

-
TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

o

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red

-
TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

23

while x # T.root and x.color == BLACK
x.p.left
p.right

if x =

w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right

// case 1
M/ case 1
// case 1
// case 1

if w.left.color == BLACK and w.right.color == BLACK

color = RED

else if w.right.color == BLACK

w.left.color = BLACK
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right

w.color = x.p.color

x.p.color = BLACK

w.right.color = BLACK

LEFT-ROTATE(T. x.p)

x = T.root

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

else (same as then clause with “right” and “left” exchanged)

x.color = BLACK

Case 1:
x’s sibling w is red

Q
o
1
o
N

x’s sibling w is black, and both of
w’s children are black

Case 3:

x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:

a’s sibling w is black, and w’s right child

2-15 Red-black Tree September 16, 2020 7/25

-
TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?
Justify your answer.

Jun Ma (majt u.edu.cn) 2-15 Red-black Tree September 16, 2020 8/25

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

-
TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?
Justify your answer.

Answer.

> NO!

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 8/25

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?

Justify your answer.

Answer.

> NO!
®

insert 100

o0 oo

insert 50 insert 25

RedBlack Tree Visualization

%o

delete 25

Jun Ma (majun@nju.edu.cn)

2-15 Red-black Tree

September 16, 2020 8/25

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

-
TC Problem 13-3 (AVL Tree)

Hoxaaas Axazexuu mays CCCP
1002, N2

Tox 14,

MATEMATHKA
F. M. ATETHCOH.BELCKHA, E. M. JAHIHC

OIMH AJIFOPHTM OPTAHH3AILHH HHOOPMALIHH

(Hpedcmasions axadewuson H. T. Memposcrus 17 1V 1962)

Syer S:émp,,mm TPcriRpoonss e,
1 1 h f h 1 1 f " Zi’uiiﬁ:ﬁ;ﬂ.3,5,,1;:’3;;”2:2":2&"‘:‘1!.‘:&’2:3’;‘3&‘&2?2‘3’“?
» An algorithm for the organization o e, 8 s Dt e acpatin e P

information (1962). m"’“wm@ﬂmr” =

Crymimu K Aamony MowenTy

» Named after 2 Russian ..,,“'s.;;sb.::::n;f;;:::r&;:?;i;ﬁ:r;:::‘::;:_;1:“;:{';,@::::":;::
. . AP e s s oot o)
mathematicians: T o8 s g (. 03 sk o by

e ouna serocpeacTaenso nozsenna e mpanas sseha. Hetocpescrsen-

> Georgii Adelson-Velsky H gl Sl S
> Evgenii Mikhailovich Landis e, 5k, S gt 40t 5 Aot

SICMENTOR MH(OPNALLI (1A OMPEAETCHNOCTH OYZeN CINTATS OLEHKH BO3pac-
JoUUH Ciea Hanpaso)
B niepnon aapece Kawioll sueiiki CIPABOHOND CTOAA YKISMHD MECTO, TAe
pacioOe cooTseTCTayIoA SreweNT WiGopNaH. BO BTOpON W TpeTHEN
CIOOREI BIpecs, TEEK CIpAOOTO CTonD, weToCpeACTINIO
HOLUMHEHHIX AaiHOR ek COOTBTCTOENHO CreBa i crpaba. ECH y s
IKOi-HHGYA CTOPOHSL HET HeNOCPEACTBEHHO NOJUHHEHHBX, TO B COOTBET-
CTayiouew a1pece — nyab. B HEKOTOPOH GHKCHpOBAHHOR AYeHKe | XpARHTES

Hasosex 1te 10K 0 i NOCICAOBATEILHOCT, AECK ACpEnd, B KoTOpoil
KEX1a1 TOCIEAYIOLAA HETIOCPEICTBNHO TIOTAMKENa NpeAMAYLIEi. [l Kaxioh

Bee (1pasee) aanHOR aueiikn, JH0Gas LeNONK, ATMa Koropo panka Amie
BeTBH, HGSMBACTCA CTEPHHEN Berai.

%

http://www.mathnet.ru/links/e8bbcf127a4f573d00aad42a7e5cdaaba/dan26964.pdf
Jun Ma (majun 2-15 Red-black Tree September 16, 2020 9/25

http://www.mathnet.ru/links/e8bbcf127a4f573d00aa42a7e5cdaaba/dan26964.pdf

-
TC Problem 13-3 (AVL Tree)

An AVL tree is a binary search tree that is height balanced: for each

node z, the heights of the left and right subtrees of = differ by at most
1.

» To implement an AVL tree, we maintain an extra attribute in each
node: z.h is the height of node .

» As for any other binary search tree T, we assume that T.root
points to the root node.

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 10/25

TC Problem 13-3 (a) I

(a) Prove that an AVL tree with n nodes has height O(lgn). (Hint:
Prove that an AVL tree of height h has at least Fj, nodes, where
F}, is the h-th Fibonacci number.)

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 11/25

TC Problem 13-3 (a) II

Proof.

p(h): an AVL tree of height h has at least F}, nodes.
> (B) p(1) is obvious true.
> (H) Assume p(k) is true for all k < h

» (I) Let r be the root, r.left and r.right be the left and right
subtrees of r accordingly. |r|: number of nodes in r.
> Assume h — 2 <rleft.h < rright.h = h — 1, then |r.left| > Fj,_o
and |r.right| > Fn_1

> So,
h
n=|r| = |rleft|+ |rright| +1 > F_o+ Fr_1+1> F, = L% + 3]
> h=0(gn)

O

v

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 12 /25

TC Problem 13-3 (b) I

(b) To insert into an AVL tree, we first place a node into the
appropriate place in binary search tree order. Afterward, the tree
might no longer be height balanced. Specifically, the heights of the
left and right children of some node might differ by 2.

Describe a procedure BALANCE(x), which takes a subtree rooted
at whose left and right children are height balanced and have
heights that differ by at most 2, i.e., |z.right.h — x.left.h| < 2, and
alters the subtree rooted at to be height balanced. (Hint: Use
rotations.)

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 13 /25

TC Problem 13-3 (b) II

Answer

» Given a node x we define the balancing
factor of x as bf (z) = r.left.h — r.right.h. (o

» After insertion, the height balance

property (i.e., e (5)

|bf(z)| = |rleft.h — r.right.h| < 1) might
be broken.

» We have to maintain the property along ° @
the path from the inserted node to root.

» After insertion,
|bf(z)| = |rleft.h — r.right.h] < 2 B.h—FE.h=2

» Assuming x.left.h > r.right.h = 2

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 14 /25

TC Problem 13-3 (b) III

» Two subcases based on the difference e @
between A.h and C.h:

» Case l: A.h>C.h

» case 2: Ah<C.h ° @

B.h—Eh=2

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 15 /25

TC Problem 13-3 (b) IV

Case 1: A.h>C.h
» Assume E.h =y, then we have

Bh=y+2
Ah=y+1

y<Ch<y+1 OO

» Right-Rotate at D

B.h—Eh=2

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 16 / 25

TC Problem 13-3 (b) V

(o) (v)
e G RightRotate(D) ° e
OO, (o) (v)

» A.h,C.h, E.h keep unchanged, and
0<Ch—-—FEh<I1
y+1<Dh=max(C.h,E.h)+1=Ch+1<y+2
0<Dh—Ah<1

> So, [bf(B)] < 1 and [bf(D)| < 1

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020

17/25

TC Problem 13-3 (b) VI

Case 2: A.h < C.h Q
» Assume E.h =y, then we have
Bh=y+2 (B) (&)
Ch=y+1
Ah=y ° o
» Left-Rotate at B
> Rigth-Rotate at D

‘ B.h—Eh=2

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 18 /25

TC Problem 13-3 (b) VII

LeftRotate(B), RightRotate(D)

? D

» A.h, E.h keep unchanged, and

y — 1 < B.right.h, D.left.h <y

0 < A.h— B.right.h <1

0< E.h— Dlefth<1

B.h = max (A.h, B.right.h) + 1=y +1
D.h=max (E.h,D.eft.h)+1=y+1
B.h=D.h

> So, [bf(B)| <1, [bf(C)| <1 and [bf(D)| <1

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 19/25

TC Problem 13-3 (b) VIII

Proof.
BALANCE(x)
1: procedure BALANCE(x)
2 if |bf(z)| = 2 then
3 if bf(x) > 0 then
4: if x.left.left.h > x.left.right.h then
5: RIGHT-ROTATE(z)
6: else
7 LEFT-ROTATE(z.le ft)
8: RIGHT-ROTATE(z)
9: else
10: if x.right.right.h > x.right.left.h then
11: LEFT-ROTATE(z)
12: else
13: RIGHT-ROTATE(z.right)
14: LEFT-ROTATE(z)

Jun Ma (maju u.edu.cn) 2-15 Red-black Tree September 16, 2020

20/25

TC Problem 13-3 (c) I

(¢) Using part (b), describe a recursive procedure AVL-INSERT(z, 2)
that takes a node x within an AVL tree and a newly created node
z (whose key has already been filled in), and adds z to the subtree
rooted at x, maintaining the property that x is the root of an AVL
tree.
Assume that z.key has already been filled in and that z.le ft= NIL
and z.right=NIL; also assume that z.h = 0. Thus, to insert the
node z into the AVL tree T', we call AVL-INSERT(T.root, z).

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 21/25

TC Problem 13-3 (c) II

AVL-INSERT(z, 2)

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

procedure AVL-INSERT(z,z)

if z.key > z.key then
if z.left #Nil then
AVL-INSERT(x.left,z)
else
zleft < z
else if z.key > z.key then
if z.right #Nil then
AVL-INSERT(z.7ight,2)
else
r.right < z
BALANCE(z)
x.h < max (z.left.h,x.right.h) + 1

Jun Ma (maju u.edu.cn)

2-15 Red-black Tree September 16, 2020

22/25

TC Problem 13-3 (d) I

(d) Show that AVL-INSERT, run on an n-node AVL tree, takes O(lgn)
time and performs O(1) rotations. J

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 23/25

TC Problem 13-3 (d) II

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

procedure AVL-INSERT(z,z)

if x.key > z.key then
if z.left #Nil then
AVL-INSERT(z.left,z)
else
xleft < z
else if z.key > z.key then
if z.right #Nil then
AVL-INSERT(z.right,z)
else
r.right < z
BALANCE(z)
x.h < max (z.left.h,x.right.h) + 1

» AVL-INSERT is called recursively at most h = lgn times;

> Only one call to BALANCE actually involves rotation.

Jun Ma (majun@nju.edu.cn)

2-15 Red-black Tree September 16, 2020

24 /25

TC Problem 13-3 (?)

(1) How to implement AVL-DELETE with BALANCE?
(2) What is the time complexity of AVL-DELETE. J

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 25/25

[m]

[
2-15 Red-black Tree

September 16, 2020

25/25

