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TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.
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TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

.
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Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

.
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Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

» len(x,b) =# O in (z,b) + #O) in (x,b) — 1

.
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TC-13.1-5

Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> len( ) #O in (l‘»b)+#o in (l‘,b)—l

> #(O in (l‘, a’) = lenblack('ra a) = lenblack(gjv b) =#0 in (:C, b)
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Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.
Assume z has are two different descendant leaves a and b, and
len(xz,a) > 2len(x,b)

» len(z,a) =# O in (z,a) + #O in (x,a) — 1

» len(x,b) =# O in (z,b) + #O) in (x,b) — 1
> #(O in (l‘,a) = lenblack('raa) = lenblack(gjv b) =#0 in (:C,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1
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Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.

Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> (,0) =# O in (z,b) + #O in (x,b) — 1
> # O in (z,a) = lenpack (T, a) = lenpaer(2,0) = # O in (z,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1
> #O in (z,0) 2 # O in (,a).

len
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Show that the longest simple path from a node x in a red-black tree to
a descendant leaf has length at most twice that of the shortest simple
path from node z to a descendant leaf.

Proof.

Assume z has are two different descendant leaves a and b, and
len(z,a) > 2len(x,b)

)
» len(z,a) =# O in (z,a) + #O in (x,a) — 1
> len(z,b) =# O in (z,b) + #0O in (z,b) — 1
> # O in (z,a) = lenpack (T, a) = lenpaer(2,0) = # O in (z,b)
> #(Oin (z,a) > # O in (z,a) +2#0O in (z,b) — 1
» #(Oin (z,a) > # O in (z,a). Impossible!

len
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TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?
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TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.
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TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.

> Largest: a tree with 3 three nodes and the root is the only black
one. The ratio is 2.
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TC-13.1-7

Describe a red-black tree on n keys that realizes the largest possible
ratio of red internal nodes to black internal nodes. What is this ratio?
What tree has the smallest possible ratio, and what is the ratio?

Answer.

> Largest: a tree with 3 three nodes and the root is the only black
one. The ratio is 2.

» Smallest: a tree with only a (black) root node. The ratio is 0
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TC-13.3-1

In line 16 of RB-INSERT, we set the color
of the newly inserted node z to red.
Observe that if we had chosen to set z’s
color to black, then property 4 of a
red-black tree would not be violated. Why

didn’t we choose to set z’s color to black?

Jun Ma (maju u.edu.cn) 2-15 Red-black Tree

RB-INSERT(T, 2)

|

W o

(S, N

[eBEN o)}

11
12
13
14
15
16
17

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = x.left
else x = x.right
Lp=y
if y == T.nil
T.root = 7
elseif z.key < y.key
y.left =z
else y.right = z
left = T.nil
.right = T.nil
.color = RED
RB-INSERT-FIXUP(T, )

I

SN
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TC-13.3-1

In line 16 of RB-INSERT, we set the color
of the newly inserted node z to red.
Observe that if we had chosen to set z’s
color to black, then property 4 of a
red-black tree would not be violated. Why
didn’t we choose to set z’s color to black?

4

Answer.

P5 is violated!

P5. For each node, all simple paths from
the node to descendant leaves contain the
same number of black nodes.

U

y
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RB-INSERT(T, 2)

|

W o

(S, N

[eBEN o)}

11
12
13
14
15
16
17

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
X = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = 7
elseif z.key < y.key
y.left =z
else y.right = z
left = T.nil
.right = T.nil
.color = RED
RB-INSERT-FIXUP(T, )

I

SN
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TC-13.3-5

Consider a red-black tree formed by inserting n nodes with
RB-INSERT. Argue that if n > 1, the tree has at least on

e red node. J

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

9
10
11
12
13
14
15

while z.p.color == RED
ifz.p==z.p.p.left
y = z.p.p.right

if y.

else i

color == RED

z.p.color = BLACK
y.color = BLACK

z.p.p.color = RED

Z p.p

. z.p.right
z=2z.p

-
=
2

LEFT-ROTATE(T, z)

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T, z.p.p)

else (same as then clause
with “right” and “left” exchanged)
16 T.root.color = BLACK



-
TC-13.3-5

Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil
z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

e

11
12
13
14
15

while z.p.color == RED
ifz.p==z.p.p.left
YV = z.p.p.right

case 1

if y.

color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z Z.p.p

else

T.root.color

-
&
1

i z.p.right

z=2z.p

LEFT-ROTATE(T, z)

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T, z.p.p)
else (same as then clause

with “right” and “left” exchanged)

= BLACK
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Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17 RB-INSERT-FIXUP(T, z)

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

e

11
12
13
14
15

while z.p.color == RED case 1
ifz.p==z.p.p.left
v = Z.p.p.right
if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
I =2pp
elseif Z
T=2zap cgse 2

LEFT-ROTATE(T, 2),

z.p.color = BLACK
z.p.p-color = RED

RIGHT-ROTATE(T. z.p.H)

else (same as then clause

T.root.color

with “right” and “left” exchanged)

= BLACK
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TC-13.3-5

Consider a red-black tree formed by inserting n nodes with

RB-INSERT. Argue that if n > 1, the tree has at least one red node.

)

RB-INSERT(T, z)

1
2
3
4
5
6
7
8

y = T.nil
x = T.root
while x # T.nil
y=x
if z.key < x.key
x = x.left
else x = x.right
Zp=y
if y == T.nil
T.root = z
elseif z.key < y.key
y.left = z
else y.right = z
z.left = T.nil

z.right = T.nil

16| z.color = RED

17

RB-INSERT-FIXUP(T, z)

Jun Ma (majunc

RB-INSERT-FIXUP(T, z)

1
2
3

[o-BEN B NNV N

9
10
11
12
13
14
15

while z.p.color == RED

ifz.p==z.p.p.left
Yy = Z.p.p.right

case 1

if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z Z.p.p

else

z=2z.p
LEFT-ROTATE(T, 2),
z.p.color = BLACK
Z.p.p.color = RED
RIGHT-ROTATE(T. 2.p. 1)

cdse 2

else (same as then clause
with “right” and “left” exchanged)

16 | T.root.color = BLACK

2-15 Red-black Tree

September 16, 2020

5/25



TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree

must be black.

RB-DELETE(T. 2)

1

2

3

4

5 RB-TRANSPLANT(T, 2, z.right)
6 elseif oht == T.nil

7 X = z.left

8 RB-TRANSPLANT(T, left)
9 else y = TREE-MINIMUM(: oht)
10 y-original-color = y.color

11 x = y.right

12

13

14

15 2

16 v.right.p = y

17 RB-TRANSPLANT(T, z. V)

18 V. left eft

19 y.left.p 4

20 y.color = z.color

21 if y-original-color == BLACK

22 RB-DELETE-FIXUP(T. x)

RB-DELETE-FIXUP(T. x)

23

2-15 Red-black Tree

while x # T.root and x.color == BLACK
if x == x.p.left

w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T, x.p)
w = x.p.right
if w.left. color == BLACK and w.right.color == BLACK
color = RED
x.p
else if w.right.color == BLACK
w.left.color = BLACK
w.color = RED

w.

X

RIGHT-ROTATE(T, w)
w = right
w.color .p.color

x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)

x = T.root

else (same as then clause with “right” and “left” exchanged)
xX.color = BLACK

// case 1
// case 1
// case 1
// case 1

// case 2
// case 2

// case 3
// case 3
// case 3
// case 3
// case 4
// case 4
// case 4
// case 4
// case 4

September 16, 2020
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP(T, x)

Case 1:

I while x # T.root and x.color == BLACK 2’s sibling w is red

2 if x == x.p.left

3 w = x.p.right

4 if w.color == RED

5 w.color = BLACK /Ml case 1 Case 2:

6 X.p.color = RED M case 1 p5 sibling w is black, and both of
7 LEFT-ROTATE(T x.p) // case 1 ’s children are black

8 w = x.p.right // case 1

9 if w.left.colo BLACK and w.right.color == BLACK

10 olor = RED M case 2

:71 else if w.right.color ez Case . 3:, .

13 ur‘lkﬁ color // case 3 z’§ Sll?hng w is black, Aw’s lefp .
b e ¥ child is red, and w’s right child is black
14 w.color = RED // case 3

15 RIGHT-ROTATE(T, w) // case 3

16 w = x.p.right // case 3

17 w.color = x.p.color // case 4 Case 4:

18 x.p.color = BLACK // case4 a’s sibling w is black, and w’s right child
19 w.right.color = BLACK / case 4 1s re
20 LEFT-ROTATE(T. x.p) // case 4
21 x = T.root / case 4

22 else (same as then clause with “right” and “left” exchanged)

23 x.color = BLACK
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP(T, x)

1
2
3
4
5

o

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

o

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

o

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

while x # T.root and x.color == BLACK
if x == x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right
if w.left.colo BLACK and w.right.color == BLACK
olor = RED

else if w.right.color
w.left.color
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right
w.color = x.p.color
x.p.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T. x.p)
x = T.root
else (same as then clause with “right” and “left” exchanged)
x.color = BLACK

// case 1
M/ case 1
// case 1
// case 1

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

Case 1:
x’s sibling w is red

Case 2:
x’s sibling w is black, and both of
w’s children are black

Case 3:
x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:
x’s sibling w is black, and w’s right child

is red
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TC-13.4-1

Argue that after executing RB-DELETE-FIXUP, the root of the tree
must be black.

RB-DELETE-FIXUP (T x)

1
2
3
4
5

23

while x # T.root and x.color == BLACK
x.p.left
p.right

if x =

w.color = BLACK
x.p.color = RED
LEFT-ROTATE(T x.p)
w = x.p.right

// case 1
M/ case 1
// case 1
// case 1

if w.left.color == BLACK and w.right.color == BLACK

color = RED

else if w.right.color == BLACK

w.left.color = BLACK
w.color = RED
RIGHT-ROTATE(T, w)
w = x.p.right

w.color = x.p.color

x.p.color = BLACK

w.right.color = BLACK

LEFT-ROTATE(T. x.p)

x = T.root

M case 2
// case 2

// case 3
// case 3
M case 3
// case 3
// case 4
// case 4
// case 4
/ case 4
/ case 4

else (same as then clause with “right” and “left” exchanged)

x.color = BLACK

Case 1:
x’s sibling w is red

Q
o
1
o
N

x’s sibling w is black, and both of
w’s children are black

Case 3:

x’s sibling w is black, w’s left
child is red, and w’s right child is black

Case 4:

a’s sibling w is black, and w’s right child
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TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?
Justify your answer.
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TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?
Justify your answer.

Answer.

> NO!
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TC-13.4-7

Suppose that a node x is inserted into a red-black tree with
RB-INSERT and then is immediately deleted with RB-DELETE. Is
the resulting red-black tree the same as the initial red-black tree?

Justify your answer.

Answer.

> NO!
®

insert 100

o0 oo

insert 50 insert 25

RedBlack Tree Visualization

%o

delete 25

Jun Ma (majun@nju.edu.cn)

2-15 Red-black Tree

September 16, 2020 8/25


https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

-
TC Problem 13-3 (AVL Tree)

Hoxaaas Axazexuu mays CCCP
1002, N2

Tox 14,

MATEMATHKA
F. M. ATETHCOH.BELCKHA, E. M. JAHIHC

OIMH AJIFOPHTM OPTAHH3AILHH HHOOPMALIHH

(Hpedcmasions axadewuson H. T. Memposcrus 17 1V 1962)

Syer S:émp,,mm TPcriRpoonss e,
1 1 h f h 1 1 f " Zi’uiiﬁ:ﬁ;ﬂ.3,5,,1;:’3;;”2:2":2&"‘:‘1!.‘:&’2:3’;‘3&‘&2?2‘3’“?
» An algorithm for the organization o e, 8 s Dt e acpatin e P

information (1962). m"’“wm@ﬂmr” =

Crymimu K Aamony MowenTy

» Named after 2 Russian ..,,“'s.;;sb.::::n;f;;:::r&;:?;i;ﬁ:r;:::‘::;:_;1:“;:{';,@::::":;::
. . AP e s s oot o )
mathematicians: T o8 s g (. 03 sk o by

e ouna serocpeacTaenso nozsenna e mpanas sseha. Hetocpescrsen-

> Georgii Adelson-Velsky H gl Sl S
> Evgenii Mikhailovich Landis e, 5k, S gt 40t 5 Aot

SICMENTOR MH(OPNALLI (1A OMPEAETCHNOCTH OYZeN CINTATS OLEHKH BO3pac-
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TC Problem 13-3 (AVL Tree)

An AVL tree is a binary search tree that is height balanced: for each

node z, the heights of the left and right subtrees of = differ by at most
1.

» To implement an AVL tree, we maintain an extra attribute in each
node: z.h is the height of node .

» As for any other binary search tree T, we assume that T.root
points to the root node.
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___________________________
TC Problem 13-3 (a) I

(a) Prove that an AVL tree with n nodes has height O(lgn). (Hint:
Prove that an AVL tree of height h has at least Fj, nodes, where
F}, is the h-th Fibonacci number.)
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___________________________
TC Problem 13-3 (a) II

Proof.

p(h): an AVL tree of height h has at least F}, nodes.
> (B) p(1) is obvious true.
> (H) Assume p(k) is true for all k < h

» (I) Let r be the root, r.left and r.right be the left and right
subtrees of r accordingly. |r|: number of nodes in r.
> Assume h — 2 <rleft.h < rright.h = h — 1, then |r.left| > Fj,_o
and |r.right| > Fn_1

> So,
h
n=|r| = |rleft|+ |rright| +1 > F_o+ Fr_1+1> F, = L% + 3]
> h=0(gn)

O

v

Jun Ma (majun@nju.edu.cn) 2-15 Red-black Tree September 16, 2020 12 /25



___________________________
TC Problem 13-3 (b) I

(b) To insert into an AVL tree, we first place a node into the
appropriate place in binary search tree order. Afterward, the tree
might no longer be height balanced. Specifically, the heights of the
left and right children of some node might differ by 2.

Describe a procedure BALANCE(x), which takes a subtree rooted
at  whose left and right children are height balanced and have
heights that differ by at most 2, i.e., |z.right.h — x.left.h| < 2, and
alters the subtree rooted at  to be height balanced. (Hint: Use
rotations.)
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___________________________
TC Problem 13-3 (b) II

Answer

» Given a node x we define the balancing
factor of x as bf (z) = r.left.h — r.right.h. (o

» After insertion, the height balance

property (i.e., e (5)

|bf(z)| = |rleft.h — r.right.h| < 1) might
be broken.

» We have to maintain the property along ° @
the path from the inserted node to root.

» After insertion,
|bf(z)| = |rleft.h — r.right.h] < 2 B.h—FE.h=2

» Assuming x.left.h > r.right.h = 2
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___________________________
TC Problem 13-3 (b) III

» Two subcases based on the difference e @
between A.h and C.h:

» Case l: A.h>C.h

» case 2: Ah<C.h ° @

B.h—Eh=2
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___________________________
TC Problem 13-3 (b) IV

Case 1: A.h>C.h
» Assume E.h =y, then we have

Bh=y+2
Ah=y+1

y<Ch<y+1 OO

» Right-Rotate at D

B.h—Eh=2
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TC Problem 13-3 (b) V

(o) (v)
e G RightRotate(D) ° e
OO, (o) (v)

» A.h,C.h, E.h keep unchanged, and
0<Ch—-—FEh<I1
y+1<Dh=max(C.h,E.h)+1=Ch+1<y+2
0<Dh—Ah<1

> So, [bf(B)] < 1 and [bf(D)| < 1
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___________________________
TC Problem 13-3 (b) VI

Case 2: A.h < C.h Q
» Assume E.h =y, then we have
Bh=y+2 (B) (&)
Ch=y+1
Ah=y ° o
» Left-Rotate at B
> Rigth-Rotate at D

‘ B.h—Eh=2
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___________________________
TC Problem 13-3 (b) VII

LeftRotate(B), RightRotate(D)

? D

» A.h, E.h keep unchanged, and

y — 1 < B.right.h, D.left.h <y

0 < A.h— B.right.h <1

0< E.h— Dlefth<1

B.h = max (A.h, B.right.h) + 1=y +1
D.h=max (E.h,D.eft.h)+1=y+1
B.h=D.h

> So, [bf(B)| <1, [bf(C)| <1 and [bf(D)| <1
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___________________________
TC Problem 13-3 (b) VIII

Proof.
BALANCE(x)
1: procedure BALANCE(x)
2 if |bf(z)| = 2 then
3 if bf(x) > 0 then
4: if x.left.left.h > x.left.right.h then
5: RIGHT-ROTATE(z)
6: else
7 LEFT-ROTATE(z.le ft)
8: RIGHT-ROTATE(z)
9: else
10: if x.right.right.h > x.right.left.h then
11: LEFT-ROTATE(z)
12: else
13: RIGHT-ROTATE(z.right)
14: LEFT-ROTATE(z)
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___________________________
TC Problem 13-3 (c) I

(¢) Using part (b), describe a recursive procedure AVL-INSERT(z, 2)
that takes a node x within an AVL tree and a newly created node
z (whose key has already been filled in), and adds z to the subtree
rooted at x, maintaining the property that x is the root of an AVL
tree.
Assume that z.key has already been filled in and that z.le ft= NIL
and z.right=NIL; also assume that z.h = 0. Thus, to insert the
node z into the AVL tree T', we call AVL-INSERT(T.root, z).
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___________________________
TC Problem 13-3 (c) II

AVL-INSERT(z, 2)

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

procedure AVL-INSERT(z,z)

if z.key > z.key then
if z.left #Nil then
AVL-INSERT(x.left,z)
else
zleft < z
else if z.key > z.key then
if z.right #Nil then
AVL-INSERT(z.7ight,2)
else
r.right < z
BALANCE(z)
x.h < max (z.left.h,x.right.h) + 1
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___________________________
TC Problem 13-3 (d) I

(d) Show that AVL-INSERT, run on an n-node AVL tree, takes O(lgn)
time and performs O(1) rotations. J
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___________________________
TC Problem 13-3 (d) II

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

procedure AVL-INSERT(z,z)

if x.key > z.key then
if z.left #Nil then
AVL-INSERT(z.left,z)
else
xleft < z
else if z.key > z.key then
if z.right #Nil then
AVL-INSERT(z.right,z)
else
r.right < z
BALANCE(z)
x.h < max (z.left.h,x.right.h) + 1

» AVL-INSERT is called recursively at most h = lgn times;

> Only one call to BALANCE actually involves rotation.
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___________________________
TC Problem 13-3 (?)

(1) How to implement AVL-DELETE with BALANCE?
(2) What is the time complexity of AVL-DELETE. J
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