o VEME IR

— JHEE3E 4:>]3.6.1.3
— N — N EEHEREEAS IR —ERE R

DUAE, TIXANFVERR N “REH)

(1)1iE BH A TSP) 2-exchang

ey Fi 45 2 B

[)
[]
—a
| o
o

o ML (2}

%ﬁ:FSPEg(3) I El\|; E%Hgo
— & A P () e R A

AE o] ...

— JHEE3& %5 >]3.7.2.1+ 3.7.2.4. 3.7.2.5. 3.7.4.4.
3.7.4.12. 3.7.4.16

2% R B e KL R)l X T SR VIFAE —T4RS, 2 HISHIV-SIY
AR HIBGE T 16 1 — i A ST R FT A LB, 12 Aw(S),
s NILFNER H) @S SRR w(S) i KIS, 45 Rl R FE T

start with any SCV
while there is a subset S’ CV such that
1S’ = |S|| =1 and w(S") > w(S) do:
set S=9'

(1) LR TR, WA, Fih S BAARR % % 2 /b7
(2) BT AL TAIE?

1. Start with an arbitrary partition (for example, §).
2. Pick a vertex v € V such that moving it across the partition would yield a greater cut value.

3. Repeat step 2 until no such v exists.

SN RUWAEER-CR LD

Proof: First of all, we observe that the maximum cut value cannot be larger than the sum of all
edge weights, thus giving

Z we = OPT.

ecE
We say that an edge contributes to a cut if its endpoints lie in different subsets of the cut. Let S be
a cut produced by our algorithm. Let v be a vertex in S. Consider the set E,, of edges incident to
v. If we move v from S to S’ = V'\ S, edges in E,, that contributed to S become non-contributing,
and vice versa. Edges not in E, are not affected. Since S is a local optimum, moving v to S” does
not increase the cut value. Therefore we have

Z Wy v > Z Wy v

SW]
™ 2l
:E ﬁe
® ©
AV \Y)
B | b M [
] .
g%
@
]
&
“

Summing over all vertices, we obtain the desired result:

2(S)=2 Y wuy>=)» we>OPT.

ucSves’ ecE
(uv)EE

JHZE35 45 >)3.7.2.5

o Let x5 = 1 if edgegi,j) is in tree
0 otherwise
o Let x denote the vector formed by x;'s for all (i, j) € E.

@ The MST found by optimal x*, denoted T*, will be a subgraph T* = (V,E*),
where E* = {(i,j) € E : x; = 1} denotes the selected edge into the spanning tree.

@ Subtour elimination formulation is based on the fact that T has no simple cycles
and has n — 1 edges

[MST1] min) ¢sx;

(ig)ekE
Z(iJ)eEx"f =n—1
st Sinceis i < IS~ 1, VSCV,S#V,S#0
x; € {0,1}, ¥(i,j) € E

where E(S) C E is a subset of edges with both ends in subset S C V. Constraint
2 (ij)ces) Xi < |S| — 1 ensures that there is no cycles in subset S.

JHEE3E 25 >]3.7.4.12

Exercise 3.7.4.12. Prove, that if GG is a bipartite graph, then

(i) any optimal solution to I(G) is a Boolean solution, i.e.,
OptLp(I(G)) = Optmmp (G), and

(ii) any optimal solution to Dual(I(G)) is a Boolean solution, i.e.,
Optre(Dual(I1(G))) = Optvcp(G).

o (i) — il A E

http://www-bcf.usc.edu/~shaddin/cs599fal13/slides/lec16.pdf
— LPH AT AT A AR £ re
— LI B AR A 2 L Y TH 245 A
— AEA IR R A YRR B P D AR TR A, e

GERA @8I 4« 5 n

JHZE3E25>]3.7.4.16

o DLEE— & HIweighted set cover A1)

IP min Y77, cjz; LP min } 7, c;z;
z; € {0,1} V7 e{1,...,n} rj >0 Vje{l,...,n}

Dual max Y, v
st Ziesjyigcj Vi e{l,...,n}
yi >0 Yie{l,...,m}

b

(FR1Etight)

Conditions For each 1 < j < n: either z; =0 or Zz‘eSj Yi = cj
For each 1 < i < m: either y; =0 or Ej:iesj r; <k (ZFMEERKRSL, AHE)

: Initializex =0 and y =0
while U # 0 do
Choose an uncovered element, say i, and raise y; until some set in S goes tight, say S
Choose all these sets S; and set z; =1
Remove all the elements in these sets S; from U
Remove all these sets S; from the collections S

end while
: Return C = {S; |z; =1} 6

NqEHELNR

o0

o FMVIR
— JHEE4E 1. 27
—JHEEATFEI WL, 2. 3/h T

)L AL S 2 A

AR A A AR E I L ?

We start with the fundamental definition of approximation algorithms. Infor-
mally and roughly, an approximation algorithm for an optimization problem
is an algorithm that provides a feasible solution whose quality does not differ
too much from the quality of an optimal solution.

o PRI MR LLRG S T NG ?

(@) = sA@) — Opty ()]

— relative error Opty(z)

eA(n) max{c .r) ICL/O(ZI) } RA(:D): {(‘05‘((«4(1)) Opfu(r) }

— approximation ratio

Opty(z) cost(A(r))

Ra(n) = max{Ra(z)|z € Ly N (Z)"}.

— &-approximation algorithm ruw@ <s for vy e 1.

— f(n)-approximation algorithm r.w) < @) for cveryne .

o YRIEAAEPTASHIFPTAS J 15?2 EATHY

Definition 4.2.1.6. Let U = (X, Yo, L, L;, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (x,2) € Ly xIR", A computes
a feasible solution A(z) with a relative error at most &, and Time z(z,27")
can be bounded by a function® that is polynomial in |z|. If Times(z,c ') can
be bounded by a function that is polynomial in both |z| and ', then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

X et A

b 2. MIN-VCP

XA LB AR S A4 ?
Tltee 2, A4

MRS AR S 07 A7 A4 BURL K

Algorithm 4.3.2.1. Input: A graph G = (V| E).
Step 1: C:=@ {during the computation C C V, and at the end C should
contain a vertex cover};
A:=0 {during the computation A C E' is a matching, and at the
end A is a maximal matching};
E’ := E {during the computation E’ C E, E’ contains exactly the
edges that are not covered by the actual C', and at the end
E' = 0}.
Step 2: while E’'#0
do begin choose an arbitrary edge {u, v} from E’;
C:=CU{u,v};
A= AU {{u,v}}:
E' := E'" — {all edges incident to u or v}
end
Output: C.

7] #52: MIN-VCP

Feid HY — BB LN B Dy L 4] 5 2
1'/\‘5*[‘21‘@ H — BB L Dy 2) 1] e 2

Algorithm 4.3.2.1. Input: A graph G = (V, E).
Step 1: C:=@ {during the computation C C V, and at the end C should
contain a vertex cover};
A:=0 {during the computation A C E' is a matching, and at the
end A is a maximal matching};
E’ := E {during the computation E’ C E, E’ contains exactly the
edges that are not covered by the actual C', and at the end
E' = 0}.
Step 2: while E’'#0
do begin choose an arbitrary edge {u, v} from E’;
C:=CU{u,v};
A= AU {{u,v}}:
E' := E'" — {all edges incident to u or v}
end
Output: C.

10

0] /2. MIN-VCP 4

M it) — ST ALl B N 1) 45 i 2
F) it Y — L AL b N2 B 4] - 2

11

0] /3. SCP

XANE A B R4 2
AL &£/ ?

IR R E e 2/ At R asagita>

Algorithm 4.3.2.11.

Input: (X,F), where X is a finite set, ¥ C Pot(X) such that X =
Uges @
Step 1: C:=@ {during the computation C C F and at the end C is a set
cover of (X, F)};
U:= X {during the computation U C X, U = X — UQeCQ for
the actual C, and at the end U = 0}.
Step 2: while U #0
do begin choose an S € F such that [SNU| is maximal;
U:=U-85;
C:=Cu{S}
end
Output: C.

RS ?

12

o] f13: SCP (1)

o VREERYIE H — S A EE Y 1R 1~ 2
 PREEMIIE H—EEUT L EE N Q(Inn) K6 71 7

Algorithm 4.3.2.11.

Input: (X,F), where X is a finite set, ¥ C Pot(X) such that X =
Uges @
Step 1: C:=@ {during the computation C C F and at the end C is a set
cover of (X, F)};
U:= X {during the computation U C X, U = X — UQeCQ for
the actual C, and at the end U = 0}.
Step 2: while U #0
do begin choose an S € F such that [SNU| is maximal;
U:=U-85;
C:=Cu{S}
end
Output: C.

13

7 #13: SCP ()

o PREEM)IE H — L8Rl L N 1R 1] - 2
o REEMIE H— LT RLEE AQ(Inn))41+ 2

U={(xy)|1<sxys<n}
— S;={(xy) | x<n/2}
— S, ={(xy) | x>n/2}
- Ti={(xy) [n/2<y<n}
— Tr={(xy) In/fd<ys<n/2}
— T3={(xy) In/8<y<n/4}

14

7] 23: SCP (4

« FIMIN-VCPAHLL, SCPEIEMEAEAT AT 2

b Bia. MAX-CUT

XA LB AR S A4 ?
Tltee 2, A4

MRS AR B0 N AT RISk

Algorithm 4.3.3.1.

Input: A graph G = (V, E).
Stepl: S=40
{the cut is considered to be (S,V — S); in fact S can be chosen
arbitrarily in this step};
Step 2: while there exists such a vertex v € V that the movement of v
from one side of the cut (S,V — S) to the other side of
(S,V — S) increases the cost of the cut.
do begin takeau € V whose movement from one side of (S5, V —S5)
to the other side of (S, V —.S5) increases the cost of the cut,
and move this u to the other side.
end
Output: (S,V - S).

16

o) @4 MAX-CUT 4

N
7

Feid HY — BB LN B Dy L 4] 5 2
Fejid HY — BB ALL B Dy 2] 5y 2

XA
iNE

o 1]

b
!
@
!

N
7

Algorithm 4.3.3.1.

Input: A graph G = (V, E).
Stepl: S=40
{the cut is considered to be (S,V — S); in fact S can be chosen
arbitrarily in this step};
Step 2: while there exists such a vertex v € V that the movement of v
from one side of the cut (S,V — S) to the other side of
(S,V — S) increases the cost of the cut.
do begin takeau € V whose movement from one side of (S5, V —S5)
to the other side of (S, V —.S5) increases the cost of the cut,
and move this u to the other side.
end
Output: (S,V - S).

17

o) @4 MAX-CUT 4

M it) — ST ALl B N 1) 45 i 2
F) it Y — L AL b N2 B 4] - 2

A

18

0] /8i5: greedyfHlocal search

o (Eik1-2 R, 4354t —Fhgreedy B %A —Flocal

search#7%, FER G HERILE (B 45 H — L5851+
— longest simple path

— MAX-SAT

— MAX-CL

