3-10 Conectivity

Jun Ma

majun@nju.edu.cn
November 25, 2020

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

Proof.

- As v is a cut-vertex of $G, G-v$ has at least two different components. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all components of $G-v$

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

Proof.

- As v is a cut-vertex of $G, G-v$ has at least two different components. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all components of $G-v$
- Now consider any two different vertex $u, w \in \bar{G}$

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

Proof.

- As v is a cut-vertex of $G, G-v$ has at least two different components. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all components of $G-v$
- Now consider any two different vertex $u, w \in \bar{G}$
- Case $1\left(u \in C_{i}, w \in C_{j}\right.$ for some $\left.i \neq j\right):(u, w) \in(\bar{G}-v) . E$

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

Proof.

- As v is a cut-vertex of $G, G-v$ has at least two different components. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all components of $G-v$
- Now consider any two different vertex $u, w \in \bar{G}$
- Case $1\left(u \in C_{i}, w \in C_{j}\right.$ for some $\left.i \neq j\right):(u, w) \in(\bar{G}-v) . E$
- Case $2\left(u, w \in C_{i}\right.$ for some $\left.i\right)$: there must be at least one vertex $x \in C_{j}(i \neq j)$, s.t. $(u, x) \in(\bar{G}-v) . E$ and $(w, x) \in(\bar{G}-v)$.E. So, u and w are connected in $(\bar{G}-v)$

CZ 5.4

Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement \bar{G} of G.

Proof.

- As v is a cut-vertex of $G, G-v$ has at least two different components. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all components of $G-v$
- Now consider any two different vertex $u, w \in \bar{G}$
- Case 1 ($u \in C_{i}, w \in C_{j}$ for some $i \neq j$): $(u, w) \in(\bar{G}-v) . E$
- Case $2\left(u, w \in C_{i}\right.$ for some $\left.i\right)$: there must be at least one vertex $x \in C_{j}(i \neq j)$, s.t. $(u, x) \in(\bar{G}-v) . E$ and $(w, x) \in(\bar{G}-v)$.E. So, u and w are connected in $(\bar{G}-v)$
- $\bar{G}-v$ is connected and v is not a cut-vertex of \bar{G}

CZ 5.8 (a)

Let G be a nontrivial connected graph. Prove that if v is an end-vertex of a spanning tree of G, then v is not a cut-vertex of G.

CZ 5.8 (a)

Let G be a nontrivial connected graph. Prove that if v is an end-vertex of a spanning tree of G, then v is not a cut-vertex of G.

Proof.

- Let T be a spanning tree of G, in which v is an end-vertex.

Let G be a nontrivial connected graph. Prove that if v is an end-vertex of a spanning tree of G, then v is not a cut-vertex of G.

Proof.

- Let T be a spanning tree of G, in which v is an end-vertex.
- Then, $T-v$ is also a tree connecting all vertices other than v

Let G be a nontrivial connected graph. Prove that if v is an end-vertex of a spanning tree of G, then v is not a cut-vertex of G.

Proof.

- Let T be a spanning tree of G, in which v is an end-vertex.
- Then, $T-v$ is also a tree connecting all vertices other than v
- So $G-v$ is connected and v cannot be a cut-vertex.

CZ 5.8 (b)

Use (a) to give an alternative proof of the fact that every nontrivial connected graph contains at least two vertices that are not cut-vertices.

CZ 5.8 (b)

Use (a) to give an alternative proof of the fact that every nontrivial connected graph contains at least two vertices that are not cut-vertices.

Proof.

- Let T be a spanning tree of G, there must be at least two different vertices $u, v \in G . V$, s.t. u and v are end-vertices of T.

CZ 5.8 (b)

Use (a) to give an alternative proof of the fact that every nontrivial connected graph contains at least two vertices that are not cut-vertices.

Proof.

- Let T be a spanning tree of G, there must be at least two different vertices $u, v \in G . V$, s.t. u and v are end-vertices of T.
- According to (a), u and v cannot be cut-vertices.

CZ 5.8 (c)

Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

CZ 5.8 (c)

Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

Proof.

- Let T be a spanning tree of G and assume that the edge $(v, u) \in G . E$ does not exist in T

Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

Proof.

- Let T be a spanning tree of G and assume that the edge $(v, u) \in G . E$ does not exist in T
- There must be a path $P: v \leadsto u$ in T

Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

Proof.

- Let T be a spanning tree of G and assume that the edge $(v, u) \in G . E$ does not exist in T
- There must be a path $P: v \leadsto u$ in T
- Remove any edge within P from T and add the edge (v, u) to T would yield a new spanning tree T^{\prime} of G that contains (v, u)

Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of G that contains all edges of G that are incident with v.

Proof.

- Let T be a spanning tree of G and assume that the edge $(v, u) \in G . E$ does not exist in T
- There must be a path $P: v \leadsto u$ in T
- Remove any edge within P from T and add the edge (v, u) to T would yield a new spanning tree T^{\prime} of G that contains (v, u)
- Repeat the process we could obtain a spanning tree T^{*} containing all edges of G that are incident with v.

CZ 5.8 (d)

Prove that if a connected graph G has exactly two vertices that are not cut-vertices, then G is a path.

Proof.

CZ 5.8 (d)

Prove that if a connected graph G has exactly two vertices that are not cut-vertices, then G is a path.

Proof.

- Part-1 (there is no vertex whose degree is greater than 2.)
- Part-2 (G has exactly two vertices with degree 1.)
- So, G is a connected graph with exactly two vertices of degree 1 and all other vertices of degree 2.

CZ 5.8 (d)

Prove that if a connected graph G has exactly two vertices that are not cut-vertices, then G is a path.

Proof.

- Part-1 (there is no vertex whose degree is greater than 2.)
- Assume that there is a vertex $v \in G$, s.t. $\operatorname{deg}(v)>=3$
- According to (c), there must be a spanning tree T containing all edges that are incident with v.
- Then, T must have more than two end-vertices which are not cut-vertices of G as well. Conflict!
- Part-2 (G has exactly two vertices with degree 1.)
- So, G is a connected graph with exactly two vertices of degree 1 and all other vertices of degree 2.

CZ 5.8 (d)

Prove that if a connected graph G has exactly two vertices that are not cut-vertices, then G is a path.

Proof.

- Part-1 (there is no vertex whose degree is greater than 2.)
- Assume that there is a vertex $v \in G$, s.t. $\operatorname{deg}(v)>=3$
- According to (c), there must be a spanning tree T containing all edges that are incident with v.
- Then, T must have more than two end-vertices which are not cut-vertices of G as well. Conflict!
- Part-2 (G has exactly two vertices with degree 1.)
- Assume there are at least 3 vertices whose degree are equal to 1 .
- Then these vertices cannot be cut-vertices. Conflict!
- So, G is a connected graph with exactly two vertices of degree 1 and all other vertices of degree 2.

CZ 5.10

Prove that a connected graph G of size at least 2 is non-separable if and only if any two adjacent edges of G lie on a common cycle of G.
\Leftarrow

Proof.

Proof.

- Assume v is a cut-vertex of G, and let $M=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of components of $G-v$

Proof.

- Assume v is a cut-vertex of G, and let $M=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of components of $G-v$
- Let $u \in c_{i} \cap N(v)$ and $w \in c_{j} \cap N(v)$, where $N(v)$ is the neighbor set of v and $i \neq j$

Proof.

- Assume v is a cut-vertex of G, and let $M=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of components of $G-v$
- Let $u \in c_{i} \cap N(v)$ and $w \in c_{j} \cap N(v)$, where $N(v)$ is the neighbor set of v and $i \neq j$
- (u, v) and (v, w) are adjacent edges and they lie on a common cycle C of G.

Proof.

- Assume v is a cut-vertex of G, and let $M=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of components of $G-v$
- Let $u \in c_{i} \cap N(v)$ and $w \in c_{j} \cap N(v)$, where $N(v)$ is the neighbor set of v and $i \neq j$
- (u, v) and (v, w) are adjacent edges and they lie on a common cycle C of G.
- So, $C-\{(u, v),(v, w)\}$ is a path from u to w.

Proof.

- Assume v is a cut-vertex of G, and let $M=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of components of $G-v$
- Let $u \in c_{i} \cap N(v)$ and $w \in c_{j} \cap N(v)$, where $N(v)$ is the neighbor set of v and $i \neq j$
- (u, v) and (v, w) are adjacent edges and they lie on a common cycle C of G.
- So, $C-\{(u, v),(v, w)\}$ is a path from u to w. Conflict!
\Rightarrow

Proof.

$$
\Rightarrow
$$

Proof.

- Assume that there are two adjacent edges (u, v) and (v, w) of G do not lie on any common cycle of G.

$$
\Rightarrow
$$

Proof.

- Assume that there are two adjacent edges (u, v) and (v, w) of G do not lie on any common cycle of G.
- Then u and w must be disconnected in $G-v$. Otherwise, there must be one path $P: u \leadsto w$ in $G-v$, and $P+(u, v)+(v, w)$ must be one cycle of G.

$$
\Rightarrow
$$

Proof.

- Assume that there are two adjacent edges (u, v) and (v, w) of G do not lie on any common cycle of G.
- Then u and w must be disconnected in $G-v$. Otherwise, there must be one path $P: u \leadsto w$ in $G-v$, and $P+(u, v)+(v, w)$ must be one cycle of G. Conflict!

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 \boldsymbol{x}$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 x$
- $k=1$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 x$
- $k=1$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 \boldsymbol{x}$
- $k=1$
- $k=2$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 x$
- $k=1$
- $k=2$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 x$
- $k=1$
- $k=2$
- $k \geq 3$

CZ 5.12

If a connected graph G contains three blocks and k cut-vertices, what are the possible values for k ? Explain your answer.

- $k=0 x$
- $k=1$
- $k=2$
- $k \geq 3 x$

CZ 5.18 (a)

Give an example of a minimum vertex-cut in Petersen graph

CZ 5.18 (a)

Give an example of a minimum vertex-cut in Petersen graph

CZ 5.18 (b)

Give an example of vertex-cut U in Petersen graph such that U is not a minimum vertex-cut of Petersen graph and no proper subset of U is a vertex-cut of Petersen graph.

CZ 5.18 (b)

Give an example of vertex-cut U in Petersen graph such that U is not a minimum vertex-cut of Petersen graph and no proper subset of U is a vertex-cut of Petersen graph.

CZ 5.22 (a)

Prove that if G is a k-connected graph and e is an edge of G, then $G-e$ is $(k-1)$-connected.

Proof.

- Assume $G-e$ is not $(k-1)$-connected. Then for any vertex set $W \subset G . V$, s.t. $|W|=k-2$, we have $G-e-W$ is disconnected.
- Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all component of $G-e-W$.

Proof.

- Assume $G-e$ is not $(k-1)$-connected. Then for any vertex set $W \subset G . V$, s.t. $|W|=k-2$, we have $G-e-W$ is disconnected.
- Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all component of $G-e-W$.
- $|C| \geq$ 3: impossible!
- $|C|=2$:

Proof.

- Assume $G-e$ is not $(k-1)$-connected. Then for any vertex set $W \subset G . V$, s.t. $|W|=k-2$, we have $G-e-W$ is disconnected.
- Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all component of $G-e-W$.
- $|C| \geq$ 3: impossible!
- $|C|=2$:
$\triangleright e=(u, v) \Rightarrow u \in C_{i}, v \in C_{j}$, where $i \neq j$; otherwise, G cannot be k-connected.

Proof.

- Assume $G-e$ is not $(k-1)$-connected. Then for any vertex set $W \subset G . V$, s.t. $|W|=k-2$, we have $G-e-W$ is disconnected.
- Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all component of $G-e-W$.
- $|C| \geq$ 3: impossible!
- $|C|=2$:
- $e=(u, v) \Rightarrow u \in C_{i}, v \in C_{j}$, where $i \neq j$; otherwise, G cannot be k-connected.
- If $\left|C_{i}\right|=\left|C_{j}\right|=1,|G \cdot V|=k$ and $\kappa(G) \leq k-1$. Conflict!

Proof.

- Assume $G-e$ is not $(k-1)$-connected. Then for any vertex set $W \subset G . V$, s.t. $|W|=k-2$, we have $G-e-W$ is disconnected.
- Let $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of all component of $G-e-W$.
- $|C| \geq$ 3: impossible!
- $|C|=2$:
- $e=(u, v) \Rightarrow u \in C_{i}, v \in C_{j}$, where $i \neq j$; otherwise, G cannot be k-connected.
- If $\left|C_{i}\right|=\left|C_{j}\right|=1,|G \cdot V|=k$ and $\kappa(G) \leq k-1$. Conflict!
- Otherwise, without losing generality, assume $\left|C_{i}\right| \geq 2$. Then, $G-(W+\{u\})$ is not connected and G is not k-connected.
Conflict!

CZ 5.22 (b)

Prove that if G is a k-connected graph and e is an edge of G, then $G-e$ is $(k-1)$-edge-connected.

```
Proof.
k-1\leq\kappa(G) \leq\lambda(G) \leq < (G)
```


CZ 5.26

Prove that if G is a graph of order n such that $\delta(G) \geq(n-1) / 2$, then $\lambda(G)=\delta(G)$.

Proof.

- Assume $\lambda(G)<\delta(G)$.
- Let $A \subseteq G . V, B \subseteq G . V$, s.t. $G . V=A \cup B, A \cap B=\emptyset$ and $|A| \leq|B|$ $\mathrm{A} \quad \mathrm{B}$

$$
\begin{aligned}
& \lambda(G)=\sum_{u \in A}\left(\operatorname{deg}(u)-\sum_{v \in A,(u, v) \in G . E} 1\right) \\
& \geq \sum_{u \in A}\left(\delta(G)-\sum_{v \in A,(u, v) \in G . E} 1\right) \\
& \geq \sum_{u \in A}(\delta(G)-(|A|-1)) \\
&=|A| \delta(G)-|A|(|A|-1) \\
& \delta(G)>\lambda(G) \geq|A| \delta(G)-|A|(|A|-1) \\
& \delta(G)<|A|
\end{aligned}
$$

- Case 1: $|G \cdot V|=n=2 k+1$

$$
\delta(G)<|A| \leq k=(n-1) / 2, \text { conflict with } \delta(G) \geq(n-1) / 2
$$

- Case 2: $|G \cdot V|=2 k$

$$
\begin{gathered}
\delta(G)<|A| \leq k \\
\delta(G) \geq(n-1) / 2 \Rightarrow \delta(G) \geq k-1 / 2 \Rightarrow \delta(G) \geq k
\end{gathered}
$$

CZ 5.34

Theorem (5.18)
Let G be a k-connected graph and let S be any set of k vertices. If a graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-connected.

Proof.

- Let T be any set of $k-1$ vertices.
- $H-T$ is connected and H is k-connected.

Proof.

- Let T be any set of $k-1$ vertices.
- Case $1(w \notin T)$:
- Case $2(w \in T)$:
- $H-T$ is connected and H is k-connected.

Proof.

- Let T be any set of $k-1$ vertices.
- Case $1(w \notin T)$:
- All vertices of G are connected in $H-T$
- w is connected to at least one vertex of G in $H-T$
- So, $H-T$ is connected.
- Case $2(w \in T)$:
- $H-T$ is connected and H is k-connected.

Proof.

- Let T be any set of $k-1$ vertices.
- Case $1(w \notin T)$:
- All vertices of G are connected in $H-T$
- w is connected to at least one vertex of G in $H-T$
- So, $H-T$ is connected.
- Case $2(w \in T)$:
- $S^{\prime}=T-\{w\}$
- Then, $H-T=G-S^{\prime}$
- As $\left|S^{\prime}\right|=k-2$ and G is k-connected, $G-S^{\prime}$ is connected
- So, $H-T$ is connected.
- $H-T$ is connected and H is k-connected.

Thank You!

