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Bin-Packing |t

Input: 7 rational numbers wi, w2, ..., w, € [0, 1] for some positive integer

.

Constraints: M(wy,wa,...,wy) = {S C {0,1}*]| for every s € S,
st - (wy,we,...,wn) <1l,and >  .gs=(1,1,...,1)}.
{if S = {s1,82,...,8m}, then 8; = (841, Si2, ..., Sin) determines

the set af ahiects nacked in the ith bin. The 7th obiect is packed into
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Sanders/van Stee: Approximations- und Online-Algorithmen

a Goal: MANITRUIT.
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FINAEIHY “balls”

Definition 4.2.3.1. Let U = (X}, Yo, L, Ly, M, cost, goal) and U =
(X1, Yo, L, L, M, cost, goal) be two optimization problems with Ly C L. A
distance function for U according to Ly is any function hy, : L — R>°
satisfying the properties

(i) hp(z) =0 for every x € Ly, and
(i) h is polynomial-time computable.

Let h be a distance function for U according to L;. We define, for anyr € R,

183 T —,— Ball,n(Ly) = {w € L| h(w) < r} .0

A~kernel
] 2

(FFA) Definition 4.2.4.1. Let U = (Y1, X0, L, L;, M, cost, goal) be an optimiza-
tion problem. A constraint distance function for U is any function h :
Ly x X3 — R20 such that
(1) h(z,S) = 0 for every S € M(z),
(i) h(z,S) > 0 for every S ¢ M(z), and

FAXT o] (1ii) h is polynomial-time computable.

1T R 89 TR

) agp T Loreverye € R*, and every « € Ly, MMx)= {S € £ | h(z,S) < €} is the
AT [e-ball of M(m)}according to h. |




Dual Approximation Algorithm

Definition 4.2.4.2. Let U = (X}, X, L, L1, M, cost, goal) be an optimiza-
tion problem, and let h be a constraint distance function for U.

An optimization algorithm A for U is called an h-dual e-approximation
algorithm for U, if for every z € Ly,

(i) A(z) € MA(z), and
(i) cost(A(z)) > Opty(x) if goal = mazimum, and
cost(A(z)) < Opty(z) if goal = minimum.

* h-dual polynomial-time approximation scheme
(h-dual PTAS for U)

* h-dual fully polynomial-time approximation
scheme (A-dual FPTAS for U)




Dual Approximation Algorithms
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scheme®!  (dual PTAS)

(i) to design a du

for the bin-pag dual PTAS for BIN-P

Step 1: Use the méthod of dynamm pmgrammmg to cleslgn a polynomial-

time algorfthy — 7 P that contain
a constan{ nu DPB-P for BIN-P , the input in-

volves a ldt of multiple ﬂccurre*ces of some values ri).
tep 2: Apply DPB- k bl
Step PPy h-dual PTAS for BIN-P, ek problem in

Section 4.3.4) nput instances
of BIN-P {hat do not contain “Sery small” r;s.

Step 3: Use the a mj h-dual PTAS for BIN-P PTAS for the
general BIN-F-

(ii) to use the dus

scheduling pr¢ PTAS for MS

PTAS for the makespan

(-




dual PTAS for BIN-P (1)

Step 1: Use the method of dynamic programming to design a polynomial-
time algorithm DPB-P for input instances of BIN-P that contain
a constant number of different values of ;s (i.e., the input in-
volves a lot of multiple occurrences of some values r;).

o VRBEMERE S S M 3 I3 A 7

Bin-P(mi,...,m,) =

1+ min {Bin—P(ml—ml,H.,m,—:ﬂa) Z:E,:q,ﬂ]}.

Il"f‘lﬂ':ma

1=1
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dual PTAS for BIN-P (2)
o VREEMERRETVE4.3.6.1 L FLmst[a] 2 4 g, 2

Algorithm 4.3.6.1 (DPB-P,).

Input:

Step 1:

Step 2:

qQ1s---+G4s. N1,---,Ns, where q; € (0,1] for ¢ = 1,...,s, and
ny,...,Ns are positive integers.

BIN-P(0,...,0) := 0;

Bin-P(hj,...,hs) := 1 for all (hy,...,hs) € {0,...,n1} x -+ x
{0,...,ns} such that 37 hig; <land >.7_; h; > 1.

Compute Bin-P(m;,...,m,) with the corresponding optimal solu-
tion T'(ma, ..., ms) by the recurrence (4.61) for all (m,,...,my) €

{0,...,?11} X X {0,...,?13}.

Output: BIN-P(n,...,ns), T(mq,...,m).

Thy Tl v e Ty = (E: -] ﬂ'i)‘r = (?1)5 = Of(2)*)

L 8




Bin-Packing |t

Input: 7 rational numbers wi, w2, ..., w, € [0, 1] for some positive integer
.
Constraints: M(wy,wa,...,wy) = {S C {0,1}*]| for every s € S,
st - (wy,we,...,wn) <1l,and >  .gs=(1,1,...,1)}.
{if S = {s1,82,...,8m}, then 8; = (841, Si2, ..., Sin) determines
the set of objects packed in the ith bin. The jth object is packed into
the ith bin if and only if s;; = 1. The constraint
[ S;r'(wl:s“'awn) <1 ]\
to be relaxed
assures that the ¢th bin is not overfilled. The constraint
Y s=(1,1,...,1)
sES
assures that every object is packed in exactly one bin.}
Cost: For every S EM(wlpWZa---awn)r
cost(S, (w1, - .., wn)) = |S|.
Goal: mMInNLMuNL.




dual PTAS for BIN-P (3)

Step 2: Apply DPB-P (in a similar way as for the knapsack problem in
Section 4.3.4) to obtain an h-dual PTAS for the input instances
of BIN-P that do not contain “very small” r;s.

o VREEMRREEEA.3.6.2M0 2 B XTI N T ERERI AL TR 2
o ‘U N4 EBIn-P ) h-dual e- U1 L5157

Input: (q1,42,...,qn), Where e < g <

Step 1:  Set s := [log,(1/¢)/e]; —t+—— : , :
)I%‘izgiﬁj\iu ¥ ll = €, al;]de( / )/ ] 0 ¢ el+e ... e(1+ &)5! 1

. / { L { /
S N t =1. .. 1 f — 2 , 1 2 3 5 s+1
ﬁ;\($§§£> N [?H =5'1l (re)fors=23
s~ X T {This corresponds to the partitioning of the interval (¢, 1] into s subin-

tervals (I, 02], ({2,013}, ..., (s, ls41].}
Step 2: for i=1 to s do

4%‘12 X [‘ETJ E/‘JF do begin L; := {q,.. ., gn} N (L i)
FLAE UK [ =i
EP ) Fﬁﬁ1a ° {We consider that every value of L; is rounded to the value I; in what
follows.}
Step 3: Apply DPB-P; on the input (I1,12,...,ls,n1,n2,..., Ng).
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BP-PTA E— h-dual e—1T{UE;

To prove that BP-PTA, is an h-dual e-approximation algorithm for
Bin-P,, we have to prove that, for every input I = (q1,q2,...,q,),€ < g <
o < gp < 1, the following two facts hold:

(i) 7 = cost(Ty,...,T;) = Bin-P(n,,...,ns) < Optg;,-p(I), where (T, ...,
T ) is the optimal solution for the input Round(I) = (Iy,...,ls,ny,...,ng)

N ‘ o . ndi
T BP-PTA M2 1 T 07 |
(ii) for every J=T1,.--,T, Yeer, la S TFE

The fact (i) is obvious because Round(I) can be considered as (pi,..., pﬂ),_
where p; < g; for every i € {1,...,n}.
Since DPB-P (Round(I)) < Optg;,-p({), we obtain

Bin-P(n1,...,ns) = Optg;,-p(Round(l)) < Optgpp(d).




To prove (ii), consider an arbitrary set of indices T' € {Th,T2,..., T}
Let ©7 = (x1,...,2,) be the corresponding description of the set of indices
assigned to this bin for Round(I). We can bound ;. ¢; as follows:

qu <th i+1 _zm‘l +z-’ﬂa(£t+1'—l) < 1+Z$3 itl — 462)

JET =1 i=1 i=1 =1
Since I; > ¢ for every i € {1,..., s}, the number of pieces in a bin is at most
(1], 1€

e | L

z T < | = | : (4.63)

Let, fori =1,... by values of size [;.
Obviously,
>~ + & (4.64)
qj S
1 obtain

for every i € {1,2
JET

L G < 1+ zllia—1L)
jeT  (4.62) i=1
L]

a.
< —(liv1 = U
(4_64)1-1_-2 J£(+1 li)
. 1=1







dual PTAS for BIN-P (4)

Step 3: Use the above h-dual PTAS to design an h-dual PTAS for the
general BIN-P.

o URAEARILEVES.3.6.4T0 2 Sl ANAL T ERER AT 2
o U NH A RBIN-Ph-dual PTAS?

Algorithm 4.3.6.4 (Bin-PTAS).

Input: (I,¢), where I = (q1,q2,...,qn), 0 < qn € g2 < -++ < gn <1,
e € (0,1).

Step 1: Findisuchthat gy < g2 <...<¢q <e<gip1 <gip2 <+ :

Step 2: Apply BP-PTA, on the input (¢;+1,...,qn). Let T = (17,.. )
be the output BP-PTA_ (gi11,...,qn).

Step 3:  For every i such that ZjeT_ g; < 1 pack one of the small pieces from
{q1,...,4;} into T} until Z:je'T,: g; >1forall j€{1,2,...,n}.
If there are still some small pieces to be assigned, take a new bin and
pack the pieces there until this bin is overfilled. Repeat this last step
several times, if necessary.

< @n
. Ton




Proof. First, we analyze the time complexity of Bin-PTAS. Step 1 can be
executed in linear time. (If one needs to sort the input values, then it takes
O(nlogn) time.) Following Lemma 4.3.6.3 the application of BP-PTA, on the
input values larger than ¢ runs in time polynomial according to n. Step 3 can
be implemented in linear time.

Now we have to prove that for every input (I,£), I = (q1,...,qn), € € (0,1),

(i) cost(Bin-PTAS(/,e)) < Optg;,-p(I), and
(ii) every bin of BIn-PTAS(],£) has a size of at most 1 + ¢ .

The condition (ii) is obviously fulfilled because BP-PTA, is an h-dual -
approximation algorithm, i.e., the bins of BP-PTA.(g;+1,...,9n) have a size
of at most 1 + £. One can easily observe that the small pieces q,,...,q; are
added to BP-PTA.(g;+1,...,¢») in Step 3 in such a way that no bin has a
size greater than 1 + €.

To prove (i) we first observe that (Lemma 4.3.6.3)

Optgi,-p(Qit1,.--1Gn) > cost(BP-PTA (gis1,...,qn))-

Now, if one adds a new bin in Step 3 of Bin-PTAS, then it means that all bins
have sizes larger than 1. Thus, the sum of the capacities (sizes) of these bins
is larger than its number and so any optimal solution must contain one bin
more. O




PTAS for MS (1)
o BIN-PAIMS /& Unfa] A B #4011 ?

2 n
Optg:_p (% % ,,,,, p—) <m & Optys(I,m) < d.

m=4
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PTAS for MS (2)

Algorithm 4.3.6.7.

are positive integers, and € > 0,
Step 1: Compute ATLEAST := max {1 >°"  p;,max{p1,...,pn} }:
Set LOWER := ATLEAST,
UPPER :=2.- ATLEAST: > example 4.2.1.2
k := [log,(4/€)]. (1 43414045 7)
Step 2:.-for 1 =1 to k do
do begin d := :(UPPER + LOWER);

|
BH ERA ] call Bin-PTAS, /3 on the input (B, 22,... B
BRI, T ¢ := cost (Bin-PTAS, /5 (B,... B2
BITEEA . ( /2 (d_ 7))
Bin-PTAS. I if ¢ > m then LOWER :=d

= else UPPER :=d

end
Step 3: Set d* := UPPER,;
call Bin-PTAS e/2 on the input (&%,...,E2).
Output: Bin-PTAS, , ( oo %’;i)

-

Input: ((I,m),e), where I = (py,...,pn), forsomen € IN, py,...,pn, m
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Greedy is good
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Bin-Packing |t

e Next Fit (Decreasing)

e [f the 1item fits 1n the same bin as the previous item,
put it there. Otherwise, open a new bin and put it in
there.

it ;: 4

e First Fit (Decreasing) FFD |§ T m

e Put each item as you come to it into the oldest
(earliest opened) bin into which it fits.

e Worst Fit (Decreasing)

e Put each item into the emptiest bin among those with
something in them. Only start a new bin if the item
doesn't fit into any bin that's already been started.

/




Bin-Packing |t

* No approximation algorithm having a
guarantee of 3/2.
e Reduction from the set partition, an NP-complete
problem.
* Set Partition

e Whether a given multiset S of positive integers
can be partitioned into two subsets S, and S, such
that the sum of the numbers 1n §; equals the sum
of the numbers 1n 3.

(-




BIN-PFIMS

o —HERFHIAEL: K (0,117 B A I A
DL R/NEIbin T, DA (s /ME)binZ H
e [BIN-P] Henrik I. Christensen, Arindam Khan, Sebastian

Pokutta, and Prasad Tetali. Approximation and online

algorithms for multidimensional bin packing: A survey.
Computer Science Review, 24, 2017.

e [MS] Gerhard J Woeginger. The open shop scheduling
problem. LIPIcs-Leibniz International Proceedings in

Informatics, volume 96. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

* MS =2 PDm||0Obj
e MS: PDm||C,
* PDm||3 ,w,C;

ax
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o logrR T fLl: SCP
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