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TRIEICFLPIS Y

m Standard form

In Section 2.3.2 we introduced the linear programming problem as to minimize

n
el X = Zc,,;:z:,:
=1

under the constraints

T
A-X =b, ie., Zﬂ-jiﬂf-j =bjforj=1,...,m.
: i=1

z; >0 fori=1,...,n (ie, X € (RZH")

for every input instance A = [aji]i=1,. mi=1,.n &= (b1,...,bm)T, and ¢ =
(¢1,...,en)" over reals.
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TRIEICFLPIS Y

m Canonical form

The canonical form of LP is to minimize

n
CT'X: E Ci " Ty

=1

under the constraints

AX > b, i.e., Zaﬁm,— > bj: fOI’j = 1,...,1'!’1
i=1

zi>0 fori=1,...,n

for every input instance (A4, b, ¢).
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TRIEICFLPIS Y

m Standard inequality form

Next, we consider the standard inequality form of LP. One has to

minimize n
CT - X = E Ci;
i=1

under the constraints

T
AX <b, ie., Zﬂjixi <b;for j=1,...,m, and
i=1
z; >0 fori=1,...,n

for a given instance A, b, c.
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RIRIEEIPIE?

Remember that the integer linear programming problem
is defined in the same way except that all coeflicients are integers and the
solution X € Z".
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AT AIPLELPYE?

Remember that the integer linear programming problem
is defined in the same way except that all coeflicients are integers and the
solution X € Z".
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TRBE AR IX A s

m Relaxation
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TRRE X LA 1S/

m Relaxation

m ... the computed optimal solution for LP does not need to be a

feasible solution for IP ..., XAEH 4 FHANR?
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YR EE fR A IX LE AT 2 7
m Relaxation

m ... the computed optimal solution for LP does not need to be a
feasible solution for IP ..., XAEH 4 FHANR?

First of all, cost(a) is a lower bound®® on the cost of the optimal solutions
with respect to 0/1-LP and IP. Thus, cost(c) can be a good approximation of
the cost of the optimal solutions of the original problem. This combined with
the prima-dual method in Section 3.7.4 can be very helpful as a precomputa-
tion for a successful application of the branch-and-bound method as described
in Section 3.4. Another possibility is to use o to compute a solution 3 that
is feasible for 0/1-LP or IP. This can be done, for instance, by (randomized)
rounding of real values to the values 0 and 1 or to positive integers. For some
problems, such a feasible solution 3 is of high quality in the sense that it
is reasonably close to an optimal solution. Some examples of such successful
applications are given in Chapters 4 and 5.
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YR EE fR A IX LE AT 2 7
m Relaxation

m ... the computed optimal solution for LP does not need to be a
feasible solution for IP ..., XAEH 4 FHANR?

(1) Reduction
Express a given instance x of an optimization problem U as an input
instance I(z) of 0/1-LP or IP.

(2) Relazation
Consider I(zx) as an instance of LP and compute an optimal solution o to
I(z) by an algorithm for linear programming.

(3) Solving the original problem
Use « to either compute an optimal solution for the original problem, or
to find a high-quality feasible solution for the original problem.
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g —Lt= gl o) Bireduce£]0/1-LPRY ?

Thus, the task is to maximize

SCP S
MS

MAX-SAT under the constraints

WEIGHT-VCP ;wixéfb, and
MMP z; €{0,1} fori=1,...,n.
WEIGHT-CL

TSP
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T
minimize E I
=1

e
-

under the following n linear constraints

MS
MAX-SAT _?-Eh;ﬂk] x; >1 fork=1,...,n

WEIGHT-VCP
MMP
WEIGHT-CL
TSP
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MAX-SAT
WEIGHT-VCP
MMP
WEIGHT-CL
TSP

® o

e

ireduce%]0/1-LPL?

minimize t

subject to Z T = 1, jed

i M

ZJ"”P” E! i M

Jed

zi; € {0.1}, ie M, jed
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WEIGHT-VCP
MMP
WEIGHT-CL
TSP

Dl e &ireduce%!|0/1-LPRE?

m
maximize E Zj
=1

subject to the following 2m + n constraints

2 — Z Z; — Z (1-x)<0forj=1,..

i€lnt (Fy) leIn=(F})
z;€{0,1} fori=1,...,n
zj€{0,1} forj=1,...,m
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R —LE = Nl o] @ireduce £10/1-LPRE ?

z; + x; = 1 for every {vs,v;} € E

m KP

m SCP

m MS

m MAX-SAT minimize

" E":-::{vi}-z,-.
= MMP =1

m WEIGHT-CL z; € {0,1}

|

TSP
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MAX-SAT
WEIGHT-VCP

WEIGHT-CL
TSP

Dl e &ireduce%!|0/1-LPRE?

Now, the task is to maximize
>
ecE

under the |V| constraints

Z ze <1 foreveryv eV,
ecE(v)

and the following |E| constraints

ze € {0,1} foreveryee€ E.
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MAX-SAT
WEIGHT-VCP
MMP

TSP
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MAX-SAT
WEIGHT-VCP

MMP max Z Uk T4,
i=1

TSP st w;+ay <1, ¥ (i,5) € E,
ri e {0,1}, i =1,...,n.
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MAX-SAT
WEIGHT-VCP
MMP
WEIGHT-CL
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TSP reducez!|0/1-LP

L3 L0
minimize the tour length Z Z Cij i .
i=1 j#i,5=1
Without further constraints, the {mglf}i!j‘ will however effectively range over all subsets of the set of edges, which is very far from the sets of
edges in a tour, and allows for a trivial minimum where all By = (). Therefore, both formulations also have the constraints that there at each
vertex is exactly one incoming edge and one outgoing edge, which may be expressed as the 2n linear equations

1 T
Zx,-jzlforjzl,.,.,nand Zx,-jzlforézl,,..,n.
=117 j=1,j5#
These ensure that the chosen set of edges locally locks like that of a tour, but still allow for sclutions violating the global requirement that
there is one tour which visits all vertices, as the edges chosen could make up several tours each visiting only a subset of the vertices; arguably

it is this global requirement that makes TSP a hard problem. The MTZ and DFJ formulations differ in how they express this final requirement as
linear constraints.
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In addition to the x;; variables as above, there is foreach 4 = 1,...,n a dummy variable u; that keeps track of the order in which the cities
are visited, counting from city 1; the interpretation is that w; < u; implies city 1 s visited before city j. For a given tour (as encoded into values
of the &;; variables), one may find satisfying values for the u; variables by making u; equal to the number of edges along that tour, when

going from city 1 to city 4.

Because linear programming favours non-strict inequalities () over strict (=), we would like to impose constraints to the effect that

Uj > u; + 1 I'f:ng =1.
Merely requiring u; > u; + x4; would not achieve that, because this also requires u; > uy when zy; = 0, which is not correct. Instead MTZ
use the nn(n — 1) linear constraints

u; + (n— 1) > u; + nay; for all distinet 4,7 € {2,...,n}

where the constant term 1. — 1 provides sufficient slack that Ly = 0 does not impose a relation between Uy and ;.

The way that the w; variables then enforce that a single tour visits all cities is that they increase by (at least) 1 for each step along a tour, with a
decrease only allowed where the tour passes through city 1. That constraint would be viclated by every tour which does not pass through city
1, so the only way to satisfy it is that the tour passing city 1 also passes through all other cities.

The MTZ formulation of TSP is thus the following integer linear programming problem:
i T
rninz: Z CiTyy
=1 j#i,5=1
:i:g-jE{O,l} t,j=1,...,m

Lt
Z Ty =1 ji=1,...,m

i=14#]
L
Z Ty =1 it=1,...,n
Flg#i
u; — Uy +nzy <n-—1 2<if i<
1<u; <n l<i<nmn.

The first set of equalities requires that each city is arrived at from exactly one other city, and the second set of equalities requires that from
each city there is a departure to exactly one other city. The last constraints enforce that there is only a single tour covering all cities, and not
two or mare disjointed tours that only collectively cover all cities.
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TRBE AR IX A s

m Rounding
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TRBE AR IX A s

m Rounding

use an optimal solution & of the relaxed problem instance to get a reasonable
feasible (integral or Boolean) solution 3 of the original problem instance.
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TRBE AR IX A s

m Rounding

use an optimal solution & of the relaxed problem instance to get a reasonable
feasible (integral or Boolean) solution 3 of the original problem instance.

m FARZ—Mirryrounding?
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TRBE AR IX A s

m Rounding

use an optimal solution & of the relaxed problem instance to get a reasonable
feasible (integral or Boolean) solution 3 of the original problem instance.

m FARZ—Mirryrounding?

the obtained rounded integral solution
is a feasible solution of the original input instance and that the cost has not
been changed too much in the rounding processes.
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RIEXNEE 7Y

Algorithm 3.7.4.2. Input: An instance (X, F), X = {a1,...,an}, F =

Step 1:

Step 2:

Step 3:

{S1,...,8m} of SCP(k).

—Reduction”

Express (X, F) as an instance I(X,F) of 0/1-LP in the way de-
scribed above.

—Relaxation”

Relax I(X, F) to an instance LP(X, F) of LP by relaxing z; € {0,1}
to0<z; <1foreveryi=1,...,m.

Solve LP(X, F) by an algorithm for linear programming.

Let @ = (on, @2, ..., ) [i-e., z; = ;] be an optimal solution for
LP(X,F).

—Solving the original problem”

Set 3; = 1iffa; > 1/k.

Output: 8= (B,..., Am).

i
minimize E I
i=1

under the following n linear constraints

Z ;=1 fork=1,...,n

F€Index( k)
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RIEXNEE 7Y

Algorithm 3.7.4.2. Input: An instance (X, F), X = {a1,...,an}, F =

Step 1:

Step 2:

Step 3:

{S1,...,8m} of SCP(k).

—Reduction”

Express (X, F) as an instance I(X,F) of 0/1-LP in the way de-
scribed above.

—Relaxation”

Relax I(X, F) to an instance LP(X, F) of LP by relaxing z; € {0,1}
to0<z; <1foreveryi=1,...,m.

Solve LP(X, F) by an algorithm for linear programming.

Let @ = (on, @2, ..., ) [i-e., z; = ;] be an optimal solution for
LP(X,F).

—Solving the original problem”

Set 3; = 1iffa; > 1/k.

Output: 8= (B,..., Am).

m A ABRT TR
m S5ELHENcostEEZ D7

i
minimize E I
i=1

under the following n linear constraints

Z ;=1 fork=1,...,n

F€Index( k)
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RIEXNEE 7Y

Algorithm 3.7.4.2. Input: An instance (X, F), X = {a1,...,an}, F =

Step 1:

Step 2:

Step 3:

{S1,...,8m} of SCP(k).

—Reduction”

Express (X, F) as an instance I(X,F) of 0/1-LP in the way de-
scribed above.

—Relaxation”

Relax I(X, F) to an instance LP(X, F) of LP by relaxing z; € {0,1}
to0<z; <1foreveryi=1,...,m.

Solve LP(X, F) by an algorithm for linear programming.

Let @ = (on, @2, ..., ) [i-e., z; = ;] be an optimal solution for
LP(X,F).

—Solving the original problem”

Set 3; = 1iffa; > 1/k.

Output: 8= (B,..., Am).

AT ABR TR

n SKRLECcostHES D7
Bi <k oy
cost(3) < k - cost(a)

i
minimize E I
i=1

under the following n linear constraints

Z ;=1 fork=1,...,n

F€Index( k)
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PREEA HWEIGHT-VCPHrelaxation &304, ?

®m Z0{@rounding?
o AtARTITHE?
o SRMEMcostiBEEZ /7

minimize

T

Zc{u,-}-:;,—.

=1

T € {'11}
x; + x4 = 1 for every {vi,v;} € E
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PREEA H MMP Hrelaxation® =014 2

®m Z0{@rounding?
o AtARTITHE?
o SRMEMcostiBEEZ /7

Now, the task is to maximize

S

ecE
under the |[V| constraints

Z ze <1 for everyv €'V,
e€cE(v)

and the following | E| constraints

ze € {0,1} foreverye€ E.
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PREEA H MMP Hrelaxation® =014 2

®m Z0{@rounding? 05 0.5
o HitAS AT ovs o.sI:Io.5
o SKMMHIcostiHEL D7 55
Now, the task is to maximize

S

ecE
under the |[V| constraints

Z ze <1 for everyv €'V,
e€cE(v)

and the following | E| constraints

ze € {0,1} foreverye€ E.
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PREEA HMAX-SATHrelaxation & 314, ?

®m Z0{@rounding?
o AtARTITHE?
o SRMEMcostiBEEZ /7

T
maximize E Zj
=1

subject to the following 2m + n constraints

zj — Z Ti — Z (l—-z)<0forj=1,....,m
i€In* (Fy) leln~(Fy)

z;€{0,1} fori=1,....,n

zj€{0,1}forj=1,...,m.
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REEZS HMAX-SAT Hrelaxation® ;%047

m {grounding?

o N4 TITiE?
o SELENcostiEZE /7

m B fREREErounding

m
maximize sz
=1
subject to the following 2m + n constraints
zj — Z x; — Z (l—-z)<0forj=1,....,m
i€lnt (F})  leln~(Fy)

z;€{0,1} fori=1,....,n
zi€{0,1}forj=1,...,m
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{Ree25 HWEIGHT-VCPirelaxation® ;%04 7

m {grounding?
o Nt ARTIITIR?
o S5RMMMcostiBEZ 7

m 2R IRER A rounding?

minimize

T

Zc{u,-}-:;,—.

=1

T € {'11}
x; + x4 = 1 for every {vi,v;} € E
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m Primal problem

m Dual problem
o TR AMREHRE LR EWNERILAY?

feasible solutions of the dual instance feasible solutions of the primal instance

costs Opty (1) = OPtDwi(U}(D“ﬂ‘IU))
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TREE AR et s 7

m Primal problem

m Dual problem
o TR AMREHRE LR EWNERILAY?

(i) Dual(U) is a maximization [minimization] problem that can be obtained
by converting every instance I of U to an instance Dual(I) of Dual(U).
There should exist an efficient algorithm for computing Dual(I) for a
given I.

(if) For every instance I of U, the cost of any feasible sclution for U is not
smaller [not greater] than the cost of any feasible solution for Dual(U),

Le. cost(a) > cost(3) [cost(a) < cost(5)]
for all o € M(I) and for all B8 € M(Dual(I)).

(i11) For every instance I of U,

Opty(I) = Opt pyayv) (Dual(l)).
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TRBE AR IX A s

Primal problem

Dual problem
o TR AMREHRE LR EWNERILAY?

m LP-duality
e LPfprimal problem#dual problem$E{a] & [5?

The canonical form of LP is to minimize

n m
el X = Zc,; ST maximize Z by,
i=] =1
under the constraints under the constraints
n m
AX > 5, le., Za,-,-m,—ij forj=1,...,m ZajiijCj fori=1,...
i=1 j=1
;>0 fori=1,...,n y; =0 for j=1,...

for every input instance (A4, b, ¢).
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Theorem 3.7.4.6 (Weak LP-Duality Theorem). Let I be an instance of
LP in the canonical form as given by (3.16) and (3.17). Let Dual(I) be the
dual instance of I given by (5.18) and (3.19). Then, for every feasible solution

o = (aq,...
M(Dual(I)),

cost

cost(a) = Zc.m > Zb B =

i.€. OptLp(I) > OPtLP(Dml(I))

The canonical form of LP is to minimize

n
X = E ¢ T;
i=1

under the constraints

n
AX 2 b, ie, Y azz 2 bjforj=1,...,m
i=1
z; >0 fori=1,..., n

for every input instance (4,b,c).

m
maximize Z biy;
j=1

under the constraints

m
Z Y5 < ¢
=1

y; >0

fori=1,..., n

forj=1,..., m.

yan) € M(I) and every feasible solution 8 = (f4,...

(8),

Bm) €

Proof. Since 8 € M(Dwal(I)) is a feasible solution for Dual(I),

m
Za,-,;,@jgci fori=1,...,n.

j=1

Since a; > 0 fori=1,...

,n, the constraints (3.20) imply

oS o e

i=1 \j=1

cost(a) =

Similarly, because a € M(I),

n
Zﬂjiaizbj‘ forj=1,...,m
i=1
and so®
cost ﬁ) Zb-’ﬂ’ < Z (Za‘nch)
i=1
Since

& (00)

i=1 \j=1

=3 (za,,a,) 8,

i=1 \i=1
the inequalities (3.21) and (3.22) imply

cost(a) > cost(f).

(3.20)

(3.21)

(3.22)
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Theorem 3.7.4.6 (Weak LP-Duality Theorem). Let I be an instance of
LP in the canonical form as given by (3.16) and (3.17). Let Dual(I) be the
dual instance of I given by (5.18) and (3.19). Then, for every feasible solution
o = (ag,...,0n) € M(I) and every feasible solution 8 = (B1,...,0m) €
M(Dual(I)),

cost(a) = ZC.% > Zb B = cost(3
i.e. OptLp(I) > OPtLP(Dml(I))

Theorem 3.7.4.8 (LP-Duality Theorem). Let I and Dual(I) be instances
of LP as described in Theorem 3.7.4.6. Then

Optrp({) = Optyp (Dual(I)).
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R=M1ELP-duality 7 14,7

The canonical form of LP is to minimize

n
CT'X: E C; Ty
=1

under the constraints »
n

AX > b, i.e., Zaj,-:ci > bj fOI‘j = 1,...,m
i=1

z; >0 fori=1,...,n

for every input instance (A4, b, ¢).

m
maximize Z bjy;
i=1
under the constraints
T
Zaﬁngcj fori=1,...,n

y; >0 forj=1,...,m.
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’(/J\ 7|‘/] LP- dualltyTDfﬁ

m In the case of the standard maximization form

maximize f(z1,...,&n) = %1 + T2+ ...+ Cnn minimize b1y; + bayz + ... + btym
under the constraints » under the constraints
Yo auzi <b;  forj=1,...,m, X ey 2 fori=1,...n,

;>0 fori=1,...,n, y; >0 forj=1,...,m.

The canonical form of LP is to minimize

n m
el X = Zc,; ST maximize Z by,
i=1 j=1
under the constraints under the constraints
n m
AX > 5, le., Za,-,-m,—ij forj=1,...,m ZajiijCj fori=1,...,n
i=1
;>0 fori=1,...,n y; >0 for j=1,...,m.

for every input instance (A4, b, ¢).
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’(/J\ 4‘/] LP- duahty?ﬂfﬁ

m In the case of the standard maximization form

maximize f(z1,...,&n) = %1 + T2+ ...+ Cnn minimize b1y; + bayz + ... + btym
under the constraints I:> under the constraints
Yo auzi <b;  forj=1,...,m, X ey 2 fori=1,...n,

;>0 fori=1,...,n, y; >0 forj=1,...,m.

maximize E Te

oy minimize Z Yu
veV
under the constraints .
|:> under the constraints
Z z. <1 for every v € V,
ecIne(v) Yu+Yw >1  for every {u,w} € E
w = 0.
2, >0 Yu 2
MMP MIN-VCP
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Primal-dual method

Primal-dual scheme
Input: An input instance G of an optimization problem U.

Step 1: Express G as an instance I(G) of IP and relax I(G) to an instance
Iet(G) of LP.

Step 2: Construct Dual(I¢/(G)) as an instance of LP.

Step 3: Try to solve at once Dual(I,.;(G)) as an instance of LP and I(G)
as an instance of IP.

Output: A feasible solution « for I(G) and Optrp(Dual(I;e(G))).

M(I-a(G)) M(Dual(ly(G)))

M(G) = M(1(G))

m Oth(G) OptLP(Iret(G)) = OptLP (Duﬂl{-{rel(G)))
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B RIS B RN o) R Aot A Bx A AN I EC o) f)
o U ER RINILES B b &R/E KIS 25 /R B 7
o &5 AYcostanfal?
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