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Af—5% 3= 7big-O?

Simplification steps:

1. Assume continuous bounding
curve going through
max times for each n.
2. Use monotonic ,
bounding curve.
Use simple upper /

bounding curve.

running time
W

n
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6 5 3 1 8 7 2 4

i« 1
while 1 < length(A)
Jhs 1
while 7 > 0 and A[j-1] > A[7J]
swap A[J] and A[]-1]
J <3 -1
end while
i«—i+1
end while
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As Simple as Inserting
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Worst-Case Analysis

Sorted (i entries)

\J \1‘0 find the right position for x in the

sorted segment, i comparisons must be
done in the worst case.

e At the beginning, there are n-1 entries 1n the
unsorted segment, so:

1 The input for which the
< . nn-1) upper bound is reached
Wn)< =
() ; l 2 does exist, so: W(n)e®(n?)




Average Behavior

Sorted (i entries)

x may be located in any one of the i+1
intervals(inclusive), assumingly, with
the same probabiliy

e Assumptions:

e All permutations of the keys are equally likely as input.

e There are not different entries with the same keys.

Note: For the (i+1)th interval (leftmost), only i comparisons are needed.




Average Complexity

e The average number of comparisons in shiftVac to find the
location for the ith element:

1 < 1 iQ i 1
— ) jt— () =—t—=—+1-—
' ZJ i+1( 2 i+l 2 [ +1
) . for the leftmost interval
e For all n-1 insertions:

=\ 2 i +1 4 j:2j
_ L 2
_ 2t 1)+7’l—zl =2 +3n+lnne®(n2)
4 = 4 4
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function merge sort(list m)
// Base case. A list of zero or one elements 1is sorted, by definition.
if length of m = 1 then
return m

// Recursive case. First, divide the list into equal-sized sublists
// consisting of the first half and second half of the list.
// This assumes lists start at index 0.
var left := empty list
var right := empty list
for each x with index i in m do
if i < (length of m)/2 then
add x to left
else
add x to right

// Recursively sort both sublists.
left := merge sort(left)
right := merge sort(right)

// Then merge the now-sorted sublists.
return merge(left, right)
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function merge(left, right)
var result := empty list

while left is not empty and right is not empty do
if first(left) = first(right) then
append first(left) to result
left := rest(left)
else
append first(right) to result
right := rest(right)

// Either left or right may have elements left; consume them.
// (Only one of the following loops will actually be entered.)
while left is not empty do

append first(left) to result

left := rest(left)
while right is not empty do

append first(right) to result

right := rest(right)
return result




Merging Sorted Arrays

Never examined again
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® An algorithm whose order-of-magnitude time performance is
bounded from above by a polynomial function of N, where N is
the size of its inputs, is called a polynomial-time algorithm,
and will be referred to here as a reasonable algorithm.

® As far as the algorithmic problem is concerned, a problem that
admits a reasonable or polynomial-time solution is said to be
tractable, whereas a problem that admits only unreasonable or

exponential—time solutions is termed 1ntractable.
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