A E e 8 LA - 114815

o FL k09 L F &P AR g X
RAZHF 1

o DHZ6-7%

B)RR1 ;. ERRIER

e linear search '] I} [A] & 4% £ ;2 O(N)
binary search'JiJ [8] & 2% FZ 2 O(logN)

LR G R X DHEE 129-139TT R, 1R 1R

PR i fr] H A i

P T

B)RR1 ;. ERRIER

e linear search '] I} [A] & 4% £ ;2 O(N)
binary search'JiJ [8] & 2% FZ 2 O(logN)

525 G R XA DHE

£129-139 00 (R FRAE, Wik

PR i fr] H A i

o KB

P T

o XFFANFEIHIHIN, I TR AH R 7
o THIN I HRALEH A

® blg'0%4+/4\ %'Z:JELE;I\ ?

Af—5% 3= 7big-O?

Simplification steps:

1. Assume continuous bounding
curve going through
max times for each n.
2. Use monotonic ,
bounding curve.
Use simple upper /

bounding curve.

running time
W

n

Bl EERIRER @

o HRE, HANEEIR

search?

RO

Bl EERIRER @

o LIA] F i big-O) & F 1 2
(B AR ? D

ARl FIERIRIER @)

o R/ #Hrinsertion sortH B+ [8] & 44

6 5 3 1 8 7 2 4

i« 1
while 1 < length(A)
Jhs 1
while 7 > 0 and A[j-1] > A[7J]
swap A[J] and A[]-1]
J <3 -1
end while
i«—i+1
end while

Pz

As Simple as Inserting

Initial Status k@ () () seereaneseass OO0 O

On Going

Final Status

Sorted

Unsorted
AN

QQ QQ O O

X
\J The “vacancy”, to be shifed

leftward, by comparisons

QQO QQQQ

Sorted Unsorted
(empty)

Final Status

On Going

Initial Status

Unsorted

(empty)

Sorted

The “vacancy”, to be shifed leftward, by comparisons

Sorted

Unsorted

Worst-Case Analysis

Sorted (i entries)

\J \1‘0 find the right position for x in the

sorted segment, i comparisons must be
done in the worst case.

e At the beginning, there are n-1 entries 1n the
unsorted segment, so:

1 The input for which the
< . nn-1) upper bound is reached
Wn)< =
() ; l 2 does exist, so: W(n)e®(n?)

Average Behavior

Sorted (i entries)

x may be located in any one of the i+1
intervals(inclusive), assumingly, with
the same probabiliy

e Assumptions:

e All permutations of the keys are equally likely as input.

e There are not different entries with the same keys.

Note: For the (i+1)th interval (leftmost), only i comparisons are needed.

Average Complexity

e The average number of comparisons in shiftVac to find the
location for the ith element:

1 < 1 iQ i 1
—) jt— () =—t—=—+1-—
' ZJ i+1(2 i+l 2 [+1
) . for the leftmost interval
e For all n-1 insertions:

=\ 2 i +1 4 j:2j
_ L 2
_ 2t 1)+7’l—zl =2 +3n+lnne®(n2)
4 = 4 4

ARl BIRREER @

R2= 7 Hrmerge sortFrES [A] & 4% & L) 2

_—

N

6 5 3 1 8 7 2 4

—H

ARl FIERIRIER @)

o YRZ 47 Hrmerge sort I 0] & J% B g 2

function merge sort(list m)
// Base case. A list of zero or one elements 1is sorted, by definition.
if length of m = 1 then
return m

// Recursive case. First, divide the list into equal-sized sublists
// consisting of the first half and second half of the list.
// This assumes lists start at index 0.
var left := empty list
var right := empty list
for each x with index i in m do
if i < (length of m)/2 then
add x to left
else
add x to right

// Recursively sort both sublists.
left := merge sort(left)
right := merge sort(right)

// Then merge the now-sorted sublists.
return merge(left, right)

ARl FIERIRIER @)

o YRZ 47 Hrmerge sort I 0] & J% B g 2

function merge(left, right)
var result := empty list

while left is not empty and right is not empty do
if first(left) = first(right) then
append first(left) to result
left := rest(left)
else
append first(right) to result
right := rest(right)

// Either left or right may have elements left; consume them.
// (Only one of the following loops will actually be entered.)
while left is not empty do

append first(left) to result

left := rest(left)
while right is not empty do

append first(right) to result

right := rest(right)
return result

Merging Sorted Arrays

Never examined again

indexC

indexA indexB
A[O] | A1l B[O] | B[m-1]
A Q@ > O @ Q. - OO
MIN
Clo® o -) Space to be filled
Sorted elements

[image: image2.jpg]

A

B

C

indexC

indexB

Space to be filled

Comparing

MIN

Sorted elements

Never examined again

indexA

[image: image1]
51

[=1

o —/NF AR LRI /N

E

7':7'/[\/

=P merge 2R AL 2

B)RR2 : [RIRRRIMERE

e reasonable flitractable &l 7 ik 22 Wi =L [a] ,
X A4 ?

® An algorithm whose order-of-magnitude time performance is
bounded from above by a polynomial function of N, where N is
the size of its inputs, is called a polynomial-time algorithm,
and will be referred to here as a reasonable algorithm.

® As far as the algorithmic problem is concerned, a problem that
admits a reasonable or polynomial-time solution is said to be
tractable, whereas a problem that admits only unreasonable or

exponential—time solutions is termed 1ntractable.

B)RR2 : |R]RRAVMERE (40

o “ELIRIRCEEAM R R HERE Hoy BN A
Zh e L AT sort, IRIRAVRITIZ &) 1k Y 3 A

[AJRR2 : [AIRRAYMERE)
o Xf T intractable problem, B4 Jp?

	计算机问题求解 – 论题1-14&15
	问题1：算法的效率
	问题1：算法的效率
	哪一条线表示big-O？
	问题1：算法的效率 (续)
	问题1：算法的效率 (续)
	问题1：算法的效率 (续)
	As Simple as Inserting
	Worst-Case Analysis
	Average Behavior
	Average Complexity
	问题1：算法的效率 (续)
	问题1：算法的效率 (续)
	问题1：算法的效率 (续)
	Merging Sorted Arrays
	引申问题
	问题2：问题的难度
	问题2：问题的难度 (续)
	问题2：问题的难度 (续)

