« AMTTiE

— JHEFAE 3 F4/ N

[ARZGE :

AR
— 4341, 43.42(HTFSKP). 43.42(FHFKP). 43.47. 4.3.4.11
— FEBIIAR M IIE B

e Fir4H: AL B. C. D

o WIRTAE (9047FP)
— 15%0%F: AFIBZHITi84.3.4.1, CHIDAiT1£4.3.4.2(FH T-SKP)
— 107%F: A4l F&V#4.3.4.1, BZHIEI
— 1047%h: C4 F & ilF#EA.3.4.2(HTSKP), DALFEM

— 1573%F. AFIBAHHE4.3.4.2(FH TKP), CHIDZH}i84.3.4.7
— 107%h: BAH E&HfE4.3.4.2(FH TKP), AHIR
— 1097%f: DA F&ifia.3.4.7, CAHIEN

— 1047%8F: FrEATTi84.3.4.11
— 1097%f: ? H FeiiFe3.4.11

Eyka.3.4.1

Algorithm 4.3.4.1. Greedy-SKP

Input: Positive integers wy,ws, ..., w,,b for some n € IN.
Step 1: Sort wy,ws,...,w,. For simplicity we may assume w; > wp > - - -
Wy,.

Step 2: T :=0; cost(T) := 0;
Step 3: for i =1 to n do
if cost(T) + w; < b then
do begin T :=T U {i};
cost(T) := cost(T) + w;
end
OQOutput: T.

[V

To see that Algorithm 4.3.4.1 is a 2-approximation algorithm for SKP it
is sufficient to show that cost(T") > b/2 or T is an optimal solution. Without
loss of generality one can assume b > w; > we > - > wy,. Let 7+ 1 be
the smallest integer not in 7" (i.e., {1,2,...,j} € T}). Note, that T # 0 (i.e.,
j 2 1) because wy <b. If j = 1, then w; +wy > b. Since wy > wy it is obvious
that cost(T) = w, > %. Thus, we may assume j > 2. In general, we have

COSt(T) + Wi4+1 > b > OptSKp(wl, g ,wn,b).
Since wy > we > - -+ > wy,

Wy +wy+ Wy
J

Wi < wy <

IA

b
- (4.19)
j

Thus, cost(T') > b—w;41 2> b— % > b/2 for every integer j > 2.

Hv%4.3.4.2(F T SKP)

Algorithm 4.3.4.2.

Input: Positive integers wy,ws,...,w,,b for some n € IN, and a positive
real number e, 0 <e < 1.

Step 1: Sort wy,ws, ..., w,. For simplicity, we assume b > w; > wy > + -+ >
Wy, .

Step 2: k:=[1/e].

Step 3: For every set S C {1,2,...,n} with [S| < k and 3, cw; < b,
extend S to S™ by using the greedy approach described in Step 3 of
Algorithm 4.3.4.1.

{The sets S are created sequentially in the lexicographical order by
backtracking, and the up-till-now best S* is always saved. }

Output: A set S* with the maximal cost(S*) among all sets created in Step
3.

Now, we show that the approximation ratio
1
Ralgorithm 4.3.4.2(1,€) < 1+ z <l+e

for every input I = wy,ws,...,wn,b of SKP. Let M = {i),iz,...,i,}, 01 <
ig < -+ < i, be an optimal solution for I, i.e., cost(M) = Optgxp(I). We
distinguish two possibilities according to the relation between p and k = [1/¢].

If p <k, then Algorithm 4.3.4.2 considers the set M in Step 3 and so S*
is an optimal solution (i.e., the relative error is 0).

Let p > k. Algorithm 4.3.4.2 extends the set P = {iy,12,...,1} containing
the indices of the k greatest weights wq,ws,...,w;, involved in cost(M) =
wi, + - +w;,. If P* = M, then we are ready. If P* # M, then there exists
iqg € M — P* such that i, > ix > k and

cost(P*) +w;, > b > cost(M). (4.20)
Since w4 e W + ¢(M)
w- w- « v w. w. COS
. < 31 12 Tk Ya 4.
Wia = k+1 - k+1 (21)
we obtain
M
R(I,e) = cost(M) < cost(M) < cost(M)
cost(S*) ~ cost(P*)a0) cost(M) — w;,
< cost(M) 1 k41
431 cost(M) — C‘;;::élﬂl 1- FIJ k
=1+ l <1+e.

k

Hv%4.3.4.2(FH TKP)

We observe that Algorithm 4.3.4.2 is consistent for KP. An input wq, ..., wn,
b, ¢1,...,cn of KP is an input of SKP if w; = ¢; for i =1,...,n, so, the rela-
tive difference between w; and ¢; seems to be a natural distance measure from
the specification w; = ¢;. This is the reason for defining the distance function
DIST for any input wy, wsg, ..., Wy, b, ¢1, ..., ¢, of KP as follows.

DIST (w1, ..., Wn,byc1y .. Cn) =
c; — W .
max{ma.x{ sz : CiZwi,ZE{l,---sn}},
i
Wy — C; .
max{ : - wizci,ﬁé{l,-w"}}}‘
Cq

Let KPs = (X1,X0, L, Balls, prst(L1), M, cost, marimum) for any § € R*.

Let us consider {ASKP,}.50 as the collection of (1 + €)-approximation
algorithms determined by Algorithm 4.3.4.2.

Lemma 4.3.4.5. For every ¢ > 0 and every § > 0, the algorithm ASKP. is
a (1+ 6% + ¢ + ¢ - §2)-approzimation algorithm for KPs.

Proof. Let I = (wy,wa,...,wn,b,c1,C2,...,¢n) be an input instance of KPj,
i.e.,
1+0) 1< i <144 (4.24)
Ci

foralli=1,2,...,n.
Let U be an optimal solution of I and let T* be the output of ASKP, for I.

Since ASKP:. is a (1+ ¢)-approximation algorithm for I’ = (wy,w2,...,wn,b)
of SKP., we have

. W
2 ieU i <1l+e. (4.25)
EjeT* wj

Now, we are ready to estimate the approximation ratio of ASKP. for the
input instance /.

cost(U) < 2icy Wi+ (1+9)

R(l,e) = ——=
(F,¢) cost(T*) (4.24) > jer- Wi+ (1+6)7!

= (1+4)?- ey Ws < (1+68)?*-(1+¢)

2 jer W5 (4.25)
1482 1ete-d A A Fsuperstable ?
= eE+e-0". .
FAAA KPS IFIPTAS ?

Ey54.3.4.7

Algorithm 4.3.4.7. PTAS MOD-SKP

Input: Positive integers wy,ws,...,wy,b,¢1,...,¢, for some n € IN, and
some positive real number g, 1 > ¢ > 0.

. € €2 Cn imnlici Ci > Citl
Step 1: Sort R R For simplicity we may assume 2 for
t=1,...,n—1

Step 2: Set k= [1/¢].

Step 3: The same as Step 3 of Algorithm 4.3.4.2, but the greedy procedure
follows the ordering of the w;s of Step 1.

Output: The best T constructed in Step 3.

Lemma 4.3.4.8. For everye, 1 > ¢ > 0 and every § > 0, MOD-SKP; s a
(1+e-(14+96)-(1+ ¢))-approximation algorithm for KPs;.

Proof. Let U = {t1,12,...,%} C {1,2,...,n}, where w;, > w;, > --- > willa
be an optimal solution for the input I = w,,...,wn,b,c1,...,Cn.

If I <k, then MOD-SKP, provides an optimal solution.
If I > k, then we consider a T = {41,929, ..., %k, Jks1s- - - Jktr} @S & greedy

extension of T" = {i1,42,...,%}. Again, we distinguish two possibilities accord-
ing to the sizes of),y wi and) cp. wj.

(1)

Now, we show that this is impossible because it contradicts the optimality
of U. Both cost(U) and cost(T™) contain E'::l ¢i,- For the rest 7™ contains
the best choice of w;s according to the cost of one weight unit. The choice
of U per one weight unit cannot be better. Thus, cost(U) < cost(T™*).
Because of the optimal choice of T according to the cost per one weight
unit, the cost c of the first part of U with the weight } .. ;. w; is at most
cost(T™), i.e.,

c— cost(T*) <0 (4.26)

Since U and T™ contain the same k indices ¢;,42,...,i, and w;,, ..., w;,
are the largest weights in both U and T, the same consideration as in
the proof of Lemma 4.3.4.4 yields (see (4.23))

d55~2w,;, and cost(U) < c+d-(1+9). (4.27)
€U

10

Considering U different from 7T, there exists an m € {k+ 1,...,1} such
that
tm € U —T" and Z w; + w;,, >b22wi.
jeT* icU
Therefore, MOD-SKP, is also an e-approximation algorithm!* for SKP
and so 5
. w;
e (4.28)
ZjGT‘ Wj

Hence,

cost(U)

cost(T™)

c+d-(1+9)

cost(T*)
cost(T*) + ¢ — cost(T*)+d - (1+9)
cost(T™)
c—cost(T*)+d-(1+)
cost(T*)

d-(1+56)

cost(T*)

R(I,¢)

<
(4.27)

< 1+
(4.26)

< l4e-(1+4)- _ZM \
(4.27) 2 5eT- Wi KfT 4 fEsuperstable?
I

(5)1+e-(1+6)-(1+6)- A KPIJPTAS? 11
4.28

Eyka.3.4.11

Algorithm 4.3.4.11. FPTAS for KP

Input:
Step 1:

Step 2:
Step 3:

Output:

Wi,yeoo Wnybye1,...,cn €IN,neN, e e RT.
Crmaz = max{cy,...,cn}
t = [logz ﬁ—j?ﬁj
for i=1to n
do ¢ := ¢ -27).
Compute an optimal solution T for the input

I'=wy,...,wn,b,ey,...,c, by Algorithm 3.2.2.2,

T

12

To obtain an FPTAS for KP we consider a completely new approach. In
Section 3.2 we presented Algorithm 3.2.2.2 (based on dynamic programming)
for KP working in time O(n- Optkp(I)) for any input I = wy,...,wn, b, c1,.. .,
cn. The trouble is that Optyxp(I) can be exponential in the input length and
so the time complexity of Algorithm 3.2.2.2 has to be considered to be expo-
nential. The idea of our FPTAS for KP is to “approximate” every input [=
Wy, ...,Wn,b,c1,...,cn by another input with I' = wy,ws, ..., wn, b,¢),...,c,
with 3., ¢; polynomial in n, and then to apply Algorithm 3.2.2.2 to the in-
put I’ in order to get a feasible solution for /. If one wants to obtain Optyp(I’)
to be small in n, then one has to divide the input values ¢1,...,¢, by a same
large number d. Obviously, the efficiency increases with growing d, but the
approximation ratio increases with growing d, too. So, d may be chosen de-
pendent on the user preference.

13

Theorem 4.3.4.12. Algorithm 4.3.4.11 15 an FPTAS for KP.

Proof. First, we show that Algorithm 4.3.4.11 is an approximation scheme.
Since the output T’ (an optimal solution for I’) is a feasible solution for I’,
and I and I' do not differ in the weights w,,...,wy,,b, T' is a feasible solution
for I, too. Let T be an optimal solution for the original input 7. Our goal is
to show that ;

costT D) .

T

We have:
cost(T, T) = zc,-
JET
> %" ¢; = cost(T', 1) {because T is optimal for
JET and T" is feasible for I'}
> 2'. Z c; {follows from ¢} = [¢; - 27|}
JET'
> 2 Zc; {because 7" is optimal for I'}
JET

= 22‘- lej-27"] {because ¢ = [c; - 27"}
JET

>Y 2(e; 27 1) = [Y e | —n 2 = cost(T, 1) —n- 2",
JET JET

We have, thus, proved

cost(T,T) = cost(T',T) > cost(T,I) —n-2¢, ie., (4.29)
0 < cost(T,I) — cost(T',T) <n-2°
£ ’Cmax me (4'30)
<. — . .
(14+¢)n 1+e¢

14

Since we may assume cost(T, 1) > Cppax (w; < bforeveryi=1,...,n), we
obtain from (4.29) and (4.30)

Crmaz
(T, 1) > — £ . 4.
cost(T',I) > oz — € T+e (4.31)
Finally,
R(I) = cost(T, 1) cost(T',I) + cost(T,I) — cost(T",T)

" oost(T', 1) — cost(T", T)

€
< —_— . .
<1+ cost(T".) {because of (4.30)}

£+ Smax
<1+ e {because of (4.31)}
Cmaz ~ € 7%

€ 1 €

= 1. g — — — .
to T =l (e =1+

T 1+e

Now, we have to prove that the time complexity of Algorithm 4.3.4.11 is
polynomial in n and ™. Step 1 and Step 2 can be executed in time O(n). Step
3 is the run of Algorithm 3.2.2.2 on the input /' and this can be performed in
time O(n - Optgp(1')). We bound Optygp(I’) as follows:

<2 (1+g)-e7t-n*e0(e7!-n?).

Thus, Algorithm 4.3.4.11 works in time O (=1 - n?). 0

15

