- 16. Let a and b be nonzero integers. If there exists r and s such that $a r+b s=1$. Show that a and b are relatively prime.
- 19. Let $x, y \in N$ be relatively prime. If $x y$ is a perfect square, prove that x and y must both be perfect squares.
- 28. Let $p>=2$. Prove that if $2^{\wedge} p-1$ is prime then p is also prime.

Mersenne primes.

- If p is a prime, $2^{\wedge} p-1$ is not necessarily a prime. E.g., 2^11-1 = $2047=23 * 89$.
- Definition: When $2 n-1$ is prime it is said to be a Mersenne prime.

$P^{\wedge} 2=2 q^{\wedge} 2$

- Using the fact that 2 is a prime, show that there do not exist integers p and q such that $p^{\wedge} 2=2 q^{\wedge} 2$.

There are various proofs of this result. Since you are asked to use the fact that 2 is prime, possibly the following one is intended.

Suppose that $p^{2}=2 q^{2}$, and factorise each side into primes. Since p^{2} is a square, the number of factors of 2 on the LHS is even. Similarly, the number of factors of 2 in q^{2} is even; but the extra 2 makes the number of factors of 2 on the RHS odd. Therefore LHS cannot equal RHS.

Infinite 4k-1 primes

- 30. Prove that there are an infinite number of primes of the form $4 \mathrm{k}-1$.
－假设 $4 \mathrm{k}-1$ 形素数只有 n 个，分别为 $\mathrm{p} 1, \mathrm{p} 2, \ldots . . ., \mathrm{pn}$考虑 $\mathrm{N}=4 \mathrm{p} 1 \mathrm{p} 2 \ldots . . . \mathrm{pn}-1$ ，设 N 的标准分解为 $\mathrm{N}=\mathrm{q} 1 \mathrm{q} 2 \ldots \ldots \mathrm{qm}$ ，即有 $4 \mathrm{p} 1 \mathrm{p} 2 \ldots \ldots \mathrm{pn}$－ 1＝q1q2．．．．．．．qn
因为 $q i(i=1,2, \ldots \ldots, m)$ 为质数，所以只有 $4 k+1$ 和 $4 \mathrm{k}-1$ 形
若某个 $q i$ 为 $4 \mathrm{k}-1$ 形，则有
$q i=p j(i=1,2, \ldots \ldots, m ; j=1,2, \ldots \ldots, n)$ ，则有qi｜-1 ，矛直
若qi都是 $4 k+1$ 形，两边对 4 求余有 $-1=1(\bmod 4)$ ，又矛盾
所以形如 $4 \mathrm{k}+3$ 形素数有无穷多个

Infinite 6n+1 primes

- Prove that there are an infinite number of primes of the form $6 n+1$.

Dirichlet's Theorem

- In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form $a+n d$, where n is a non-negative integer.
- This result had been conjectured by Gauss, but was first proved by Dirichlet (1837).

8. If $k=j q+r$, as in Euclid's division theorem, is there a relationship between $\operatorname{gcd}(q, k)$ and $\operatorname{gcd}(r, q)$? If so, what is it?
9. If $k=j q+r$, as in Euclid's division theorem, is there a relationship between $\operatorname{gcd}(j, k)$ and $\operatorname{gcd}(r, k)$? If so, what is it?

The end.

Infinite primes

- Euclid offered the following proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here.
- Consider any finite list of prime numbers p1, p2, ..., pn. It will be shown that at least one additional prime number not in this list exists. Let P be the product of all the prime numbers in the list: $P=p 1 p 2 \ldots$...pn. Let $q=P+1$. Then q is either prime or not:
- If q is prime, then there is at least one more prime than is in the list.
- If q is not prime, then some prime factor p divides q. If this factor p were on our list, then it would divide P (since P is the product of every number on the list); but p divides $P+1=q$. If p divides P and q, then p would have to divide the difference[2] of the two numbers, which is $(P+1)-P$ or just 1 . Since no prime number divides 1, this would be a contradiction and so p cannot be on the list. This means that at least one more prime number exists beyond those in the list.
- This proves that for every finite list of prime numbers there is a prime number not on the list, and therefore there must be infinitely many prime numbers.
- Euclid is often erroneously reported to have proved this result bycontradiction, beginning with the assumption that the set initially considered contains all prime numbers, or that it contains precisely the nsmallest primes, rather than any arbitrary finite set of primes.[3] Although the proof as a whole is not by contradiction (it does not assume that only finitely many primes exist), a proof by contradiction is within it, which is that none of the initially considered primes can divide the number qabove.

