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Definition 3.2.1.1. Let U be an integer-valued problem, and let A be an al-
gorithm that solves U. We say that A is a pseudo-polynomial-time algo-
rithm for U if there exists a polynomial p of two variables such that

N
.

Time 4(z) = O(p(lz|, Maz-Int(x)))

for every instance x of U.
Definition 3.2.1.2. Let U be an integer-valued problem, and let h be a non-
decreasing function from IN to IN. The h-value-bounded subproblem of

U, Value(h)-U, is the problem obtained from U by restricting the set of all
input instances of U to the set of input instances x with Maz-Int(z) < h(|z|).
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Algorithm 3.2.2.2 ((DPKP)).

Input:

Step 1:
Step 2:

Step 3:

Output:

I = (w,wa,...,Wn,€C1,€2,.--,Cn,b) € (N={0})2"*! n a positive
integer.
TRIPLE(1) := {(0,0,0)} U {(e1, w1, {1}) | if wy < b}.
for i=1ton—1do
begin SET(i+ 1) := TRIPLE(i);
for every (k,w,T") € TRIPLE(i) do
if w+ wip1 <bthen
SET(i+1) := SET(i+1)U{(k+cipr, wtwisr, TU{i+1})};
Set TRIPLE(i+1) as a subset of SET'(i+ 1) containing exactly
one triple (m, w’, T") for every achievable profit m in SET'(i + 1)
by choosing a triple with the minimal weight for the given m
end
Compute ¢ := max{k € {1,...,3.1_, &;} | (k,w,T) € TRIPLE(n)
for some w and T'}.
The index set T such that (c,w,T") € TRIPLE(n).
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1}, Ab%g/\*ﬁ *E‘é EI/‘J Algorithm 3.2.3.10 (The Ford-Fulkerson Algorithm).
/J\ H[ﬁ l H71an Input: (V,E), ¢, s,t of a network H = (V. E),¢,Q7, s, ).
,fﬁ” % HE‘[’ D Step 1: Determine an initial flow function f of H (for instance, f(e) = 0 for
e alle € E); HALT:= 0
Step2: S:={sh S:=V -85,
Step 3: while t & S and HALT=0 do
begin find an edge e = (u,v) € E(S,S)U E(S, S) such that

end

res(e) >0
—c(e) — f(e) >0 ife e E(S,S) and f(e) > 0if
e € E(S,8)",
if such an edge does not exist then HALT =1
else if ee E(S,S) then S:=SuU {v}

else §:=SuU{u};
S=V-8

Step 4: if HALT= 1 then return (f,S)
else begin find an augmenting path P from s to ¢, which

end;

consists of vertices of S only; —this is possible
because both s and t are in S”;

compute res(P);

determine f' from f as described in Lemma 3.2.3.9

goto Step 2
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Definition 3.2.4.1. An integer-valued problem U is called strongly NP-
hard if there exists a polynomial p such that the problem Value(p)-U is NP-
hard.
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— Every weighted version of an optimization graph
problem (e.g., WEIGHT-VCP) is strongly NP-hard if the
original “unweighted” version (e.g., MIN-VCP) is NP-
hard.
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Definition 3.3.1.1. Let U be a computing problem, and let L be the language

of all instances of U. A parameterization of U is any function Par: L — IN
such that

\

(i) Par is polynomial-time computable, and
(ii) for infinitely many k € IN, the k-fixed-parameter set

Sety (k) = {z € L|Par(z) = k}
is an infinite set.
We say that A is a Par-parameterized polynomial-time algorithm for
U if
(i) A solves U, and

(1) there exists a polynomial p and a function f : IN — IN such that, for every
z €L,

Timea(z) < f(Par(z)) - p(|z]).
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— Capture the inherent difficulty of particular input instances.
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— One can design a practical parameterized polynomial-time algorithm.

— Most of the problem instances occurring in the considered application

have this parameter reasonably small.

Definition 3.3.1.1. Let U be a computing problem, and let L be the language
of all instances of U. A parameterization of U is any function Par: L — IN
such that

(i) Par is polynomial-time computable, and
(ii) for infinitely many k € IN, the k-fixed-parameter set

Sety(k) = {x € L | Par(z) = k}
is an infinite set.

We say that A is a Par-parameterized polynomial-time algorithm for
U if
(i) A solves U, and

(1) there exists a polynomial p and a function f : IN — IN such that, for every
z €L,

Timea(z) < f(Par(z)) - p(|z|).



Algorithm 3.3.2.4.

Step 1:

Step 2:

Step 3:
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Input: (G,k), where G =
a positive integer.
Let H contain all vertices of G with degree greater than k.
if |H| > k, then output( “reject”) {Observation 3.3.2.2};
if |H| < k, then m := k — |H| and G’ is the subgraph of G
obtained

by removing all vertices of H with their incident edges.
if G’ has more than m(k + 1) vertices [[V — H| > m(k + 1)] then
output( “reject”) {Observation 3.3.2.3}.
Apply an exhaustive search (by backtracking) for a vertex cover of
size at most m in G,
if G’ has a vertex cover of size at most m, then output( “accept"),
else output( “reject”).

(V,E) is a graph and k is
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We consider the following divide-and-conquer strategy. Let (G, k) be an
input instance of the vertex cover problem. Take an arbitrary edge {v,,v2}
of G. Let G; be the subgraph of G obtained by removing v; with all incident
edges from G for i = 1,2. Observe that

(G, k) € VC iff [(Gy,k — 1) € VC or (G, k — 1) € VC).

Obviously, (G, k — 1) can be constructed from G in time O(|V|). Since, for
every graph H, (H,1) is a trivial problem that can be decided in O(|V|) time
and the recursive reduction of (G, k) to subinstances of (G, k) can result in
solving at most 2* subinstances of (G, k), the complexity of this divide-and-
conquer algorithm is in O (2% - n).



