作业1－11

UD第20章问题4，8，9，10
UD第21章问题7，9，10，11，16，17，18，19
UD第22章问题1，2，3，6，9
UD第23章问题2，3，10

Problem 20.9, (a) Suppose that A and B are nonempty finite sets and $A \cap B=\emptyset$. Show that there exist positive integers n and m such that $A \approx\{1,2, \ldots, n\}$ and $B \approx\{n+1, \ldots, n+m\}$.
(b) Prove Corollary 20.4

Let A and B be disjoint sets. If A and B are finite, then $A \cup B$ is finite.
(a)
$\because A, B$ are nonempty finite sets
$\therefore \exists n, m \in \mathbb{Z}^{+}$,s.t.,

$$
\begin{aligned}
& A \approx\{1,2, \ldots, n\} \\
& B \approx\{1,2, \ldots, m\} \text {, in another word, } \exists g: B \rightarrow\{1,2, \ldots, m\} \text { and } g \text { is bijective }
\end{aligned}
$$

The function $f(x)=x+n$ from $\{1,2, \ldots m\}$ to $\{\mathrm{n}+1, \ldots, \mathrm{n}+\mathrm{m}\}$, we could show that $f(x)$ is bijective (skipped).
$\because g, f$ are both bijective
$\therefore f \circ g: B \rightarrow\{n+1, \ldots, n+m\}$ is bijective, then $B \approx\{n+1, \ldots, n+m\}$
(b)

Case1: if A or B is empty, $A \cup B$ is obviously finite;
Case2: neither A nor B is empty
$\because A, B$ are nonempty finite sets
\therefore from (a), we know that $\exists n, m \in \mathbb{Z}^{+}, s . t$,

$$
\begin{gathered}
A \approx\{1,2, \ldots, n\} \\
B \approx\{n+1, \ldots, n+m\}
\end{gathered}
$$

$\because A \cap B=\emptyset$ and $\{1,2, \ldots, \mathrm{n}\} \cap\{n+1, \ldots, n+m\}$, By Theorem 20.6, we have:

$$
A \cup B \approx\{1,2, \ldots, n\} \cup\{n+1, \ldots, n+m\}=\{1,2, \ldots, n+m\}
$$

$\therefore A \cup B$ is finite

[^0] and $B \approx D$, then $A \cup B \approx C \cup D$.

Problem 21.10. Suppose that A is an infinite set, B is a finite set, and $f: A \rightarrow B$ is a function. Show that there exists $b \in B$ such that $f^{-1}(\{b\})$ is infinite.
$\because f$ is well defined
$\therefore \mathrm{U}_{b \in B} f^{-1}(\{b\})=A$
Assume that $\forall b \in B, f^{-1}(\{b\})$ is finite.
According to Exercise 20.13, we could conclude that $\mathrm{U}_{b \in B} f^{-1}(\{b\})$ is finite(Contradiction) So, the assumption is not correct, $\exists b \in B$ s.t. $f^{-1}(\{b\})$ is finite

Exercise 20.13. Use induction to prove the following. Let $m \in \mathbb{Z}^{+}$. If $A_{1}, A_{2}, \ldots, A_{m}$ are finite sets, then the union $\bigcup_{j=1}^{m} A_{j}$ is finite.

Problem 21.11. Let X be an infinite set, and A and B be finite subsets of X. Answer each of the following, giving reasons for your answers:
(e) If $f: A \rightarrow X$ is a one-to-one function, is $f(A)$ finite or infinite?

Obviously, $\operatorname{ran}(f)=f(A) \subseteq X$
Define a function, $g: A \rightarrow f(A)$ as $g(x)=f(x)$
It is easy to show that g is one-to-one and onto, so g is bijective
Then, $A \approx f(A)$
$f(A)$ is finite

Problem 21.15. Let A be a nonempty finite set with $|A|=n$ and let $a \in A$. Prove that $A \backslash\{a\}$ is finite and $|A \backslash\{a\}|=n-1$.
$\because A$ is nonempty and finite with $|A|=n$
$\therefore \exists f: A \rightarrow\{1,2, \ldots, n\}$ and f is bijective
For each $a \in A, f(a) \in\{1,2, \ldots, n\}$, we can define an new function $g: A \backslash\{a\} \rightarrow$ $\{1,2, \ldots, n\} \backslash\{f(a)\}$ as following:

$$
g(x)=f(x), x \in A \backslash\{a\}
$$

We can show that $g(x)$ is bijective(skipped), so $A \backslash\{a\} \approx\{1,2, \ldots, n\} \backslash f(a)$ Given $f(a)$ we could also find a function $h:\{1,2, \ldots, n\} \backslash f(a) \rightarrow\{1,2, \ldots, \mathrm{n}-1\}$ as:

$$
h(x)= \begin{cases}f(x), & x<f(a) \\ f(x)-1, & x>f(a)\end{cases}
$$

We can show that $h(x)$ is bijective, so $\{1,2, . ., \mathrm{n}\} \backslash f(a) \approx\{1,2, \ldots, n-1\}$
Consequently, $A \backslash\{a\} \approx\{1,2, \ldots, n-1\}$, so $|A \backslash\{a\}|=n-1$

Problem 21.16. (a) Suppose that A is a finite set and $B \subseteq A$. We showed that B is finite. Show that $|B| \leq|A|$.
(b) Suppose that A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then $|B|<|A|$.
(c) Show that if two finite sets A and B satisfy $B \subseteq A$ and $|A| \leq|B|$, then $A=B$.
(a)

Case1: $B=\emptyset$, obviously $|B| \leq|A|$
Case2: $B \neq \emptyset$, obviously A is not empty.
Case 2.1: $A=B$, obviously $|B|=|A|$
Case 2.2: $B \subset A$, then $|B|=|A|-|A \backslash \mathrm{~B}|<|A|$

$$
\begin{aligned}
& \text { we now try to show: For an arbitrary non empty finite set } \mathrm{B} \text { and any of its finite } \\
& \text { superset } \mathrm{A} \text {, then }|A \backslash \mathrm{~B}|=|A|-|B| \\
& \text { by introduction on }|\mathrm{B}| \\
& \text { base case: }|\mathrm{B}|=1 \text {, by problem } 21.15 \text {, we get }|A \backslash \mathrm{~B}|=|A|-1 \\
& \text { H:for each }|B| \leq k,|A \backslash \mathrm{~B}|=|A|-|B| \\
& \text { I: when }|B|=k+1 \text {, let } x \in B \text { be an arbitrary element of } \mathrm{B} \text {, then } B= \\
& (B \backslash\{x\}) \cup\{x\} \\
& \text { so } A \backslash \mathrm{~B}=A \backslash((B \backslash\{x\}) \cup\{x\})=(A \backslash\{x\}) \backslash(B \backslash\{x\}) \\
& \text { From base case, we know that }|A \backslash\{x\}|=|A|-1,|B \backslash\{x\}|=|B|-1 \\
& \text { As }|B \backslash\{x\}|=|B|-1 \text {, and } \mathrm{B} \backslash\{x\} \subseteq A \backslash\{x\} \text {, from } \mathrm{H} \text {, we know that } \\
& \quad|(A \backslash\{x\})-B \backslash\{x\}|=|A \backslash\{x\}|-|B \backslash\{x\}|=|A|-|B| ;
\end{aligned}
$$

Problem 20.9, (a) Suppose that A and B are nonempty finite sets and $A \cap B=\emptyset$. Show that there exist positive integers n and m such that $A \approx\{1,2, \ldots, n\}$ and $B \approx\{n+1, \ldots, n+m\}$.
(b) Prove Corollary 20.4

Let A and B be disjoint sets. If A and B are finite, then $A \cup B$ is finite.
(a)
$\because A, B$ are nonempty finite sets
$\therefore \exists n, m \in \mathbb{Z}^{+}$, s.t.,

$$
\begin{aligned}
& A \approx\{1,2, \ldots, n\} \\
& B \approx\{1,2, \ldots, m\} \text {, in another word, } \exists g: B \rightarrow\{1,2, \ldots, m\} \text { and } g \text { is bijective }
\end{aligned}
$$

The function $f(x)=x+n$ from $\{1,2, \ldots m\}$ to $\{\mathrm{n}+1, \ldots, \mathrm{n}+\mathrm{m}\}$, we could show that $f(x)$ is bijective(skipped).
$\because g, f$ are both bijective
$\therefore f \circ g: B \rightarrow\{n+1, \ldots, n+m\}$ is bijective, then $B \approx\{n+1, \ldots, n+m\}$
(b)

Case1: if A or B is empty, $A \cup B$ is obviously finite;
Case2: neither A nor B is empty
$\because A, B$ are nonempty finite sets

$$
A=A \backslash B \cup B,|A \backslash B| \geq \mathbf{0}
$$

回顾
\therefore from (a), we know that $\exists n, m \in \mathbb{Z}^{+}$, s.t.,

$$
\begin{gathered}
A \approx\{1,2, \ldots, n\} \\
B \approx\{n+1, \ldots, n+m\}
\end{gathered}
$$

$\because A \cap B=\varnothing$ and $\{1,2, \ldots, \mathrm{n}\} \cap\{n+1, \ldots, n+m\}$, By Theorem 20.6, we have:

$$
A \cup B \approx\{1,2, \ldots, n\} \cup\{n+1, \ldots, n+m\}=\{1,2, \ldots, n+m\}
$$

$\therefore A \cup B$ is finite
Theorem 20.6 Let A, B, C, and D be nonempty sets. If $A \cap B=\emptyset, C \cap D=\emptyset, A \approx C$, and $B \approx D$, then $A \cup B \approx C \cup D$.

Problem 21.16. (a) Suppose that A is a finite set and $B \subseteq A$. We showed that B is finite. Show that $|B| \leq|A|$.
(b) Suppose that A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then $|B|<|A|$.
(c) Show that if two finite sets A and B satisfy $B \subseteq A$ and $|A| \leq|B|$, then $A=B$.
(a)

Case1: $B=\emptyset$, obviously $|B| \leq|A|$
Case2: $B \neq \emptyset$, obviously A is not empty.

```
There is a bijective function g:A->{1,2,.., |A|},
    and a bijective function }h:B->{1,2,..,|B|
Then the function H=g\circf\circ}\mp@subsup{h}{}{-1}\mathrm{ should be 1-to-1
```

$\because B \subseteq A$
We could find a function $f: B \rightarrow A$ na, $(x)=x$
Obviously, f is 1-to-1
Assume that $|B|>|A|$, then according to Pigeonhole principle Hcannot be 1-to-1, which is contractive to our assumption.
Consequently, $|B| \leq|A|$

Theorem 22.2 (Pigeonhole principle). Let m and n be positive integers with $m>n$, and let f be a map satisfying $f:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$. Then f is not one-to-one.

Problem 22.1 Give an example, if possible, of each of the following:
(a) a countably infinite collection of pairwise disjoint finite sets whose union is countably infinite (see Problem 8.11for the definition of pairwise disjoint);
(b) a countably infinite collection of nonempty sets whose union is finite;
(c) a countably infinite collection of pairwise disjoint nonempty sets whose union is finite.

For(a), For $n \in \mathbb{N}$ let $A_{n}=\{n\}$. Then $A_{n} \cap A_{m}=\emptyset$ for $n \neq m$ as required, and $\bigcup_{n \in \mathbb{N}} A_{n}=\mathbb{N}$

For (b), try something like $A_{n}=\{1\}$. Then $\bigcup A_{n}=\{1\}$ is finite.

For (c), no example exists: If I is an index set and for each $i \in I, A_{i}$ is a nonempty set, then by picking an element $a_{i} \in A_{i}$, we obtain a map $I \rightarrow \bigcup_{i \in I} A_{i}$. If the A_{i} are pairwise disjoint, this map is certainly injective, hence $\left|\bigcup_{i \in I} A_{i}\right| \geq|I|$

Problem 22.3. Is the set of all infinite sequences of 0 's and 1 's finite, countably infinite, or uncountable? Guess and then prove, please.

Uncountable!

Let A be the set of all infinite sequences of 0's and 1's, then A is obviously infinite
Assume A is countable, then $A \approx \mathbb{N}$, then there should be a bijective function $f: \mathbb{N} \rightarrow A$

$$
\begin{aligned}
& f(1)=\boldsymbol{a}_{11} a_{12} a_{13} \ldots \\
& f(2)=a_{21} \boldsymbol{a}_{22} a_{23} \ldots \\
& f(3)=a_{31} a_{32} \boldsymbol{a}_{33} \ldots
\end{aligned}
$$

Here, $a_{i j} \in\{0,1\}$.
Then we could construct an infinite sequence of 0's and 1's $\left(x=b_{1} b_{2} b_{3} \ldots\right)$ by:

$$
b_{i}=1-a_{i i}, i=1,2,3 \ldots
$$

Obviously $x \in A$, but $\forall a \in A, f(a) \neq x$
Therefore, f cannot be onto, so cannot be bijective.

Problem 22.3. Is the set of all infinite sequences of 0 's and 1 's finite, countably infinite, or uncountable? Guess and then prove, please.
which finally ends with infinite O's

Let A be the set of all infinite sequences of 0's and 1's which finally ends with infinite 0 's, then A is obviously infinite
For an arbitrary $x \in A, x$ finally ends with infinite 0 's, let n_{x} be the position of the last 1 in x. Then x can be represented as:

$$
x=a_{1} a_{2} \ldots a_{n_{x}} 000 \ldots
$$

So, for an arbitrary $x \in A$, we could mapping it to an finite sequence of 0 's and 1's by function $f: A \rightarrow$ B, where B is the set of all finite sequences of 0 's and 1 's that start with 0 :

$$
f(x)=\mathbf{0} a_{n_{x}} a_{n_{x}-1} \ldots a_{2} a_{1} \text {, where } x=a_{1} a_{2} \ldots a_{n_{x}} 000 \ldots
$$

For each element $b \in B, \mathrm{~b}$ can be seen as the binary representation of an Natural Number, and $B \approx \mathbb{N}$ It is easy to show that f is one-to-one(skipped), so \mathbf{A} is countable! (By Exercise 22.5)

Exercise 22.5 Prove that a nonempty set A is countable if and only if there exists a one-to-one function $f: A \rightarrow \mathbb{N}$.

\boldsymbol{N}_{0} 与 \aleph_{1} 之间还有什么？

－在数学中，连续统假设（英语：Continuum hypothesis，简称CH）是一个猜想，也是希尔伯特的 23 个问题的第一题，由康托尔提出，关于无穷集的可能大小。其为：
－不存在一个基数绝对大于可列集 $\left(\mathrm{N}_{0}\right)$ 而绝对小于实数集（ \aleph_{1} ）的集合。

讨论， $\mathbb{N}, P(\mathbb{N}), \mathbb{R}$ 与 \aleph_{0}, \aleph_{1}

已知 $[0,1] \approx \mathbb{R}$ ，所以仅需考虑 $[0,1]$
找到一个双射 function $f: P(\mathbb{N}) \rightarrow[0,1]$

－$|P(\mathbb{N})| ?|\mathbb{R}|$
能找到么？

找到一个双射 function $f: P(\mathbb{N}) \rightarrow[0,1]$

- 基本思路：
- 令A为所有仅由 0,1 所构成的序列所构成的集合。
- 对于任意元素 $X \in P(\mathbb{N}), X \subseteq \mathbb{N}$ ，构造 $g: P(\mathbb{N}) \rightarrow A$
- $g(X)=a_{1} a_{2}, \ldots, a_{n} \ldots$ ，其中 $a_{i}=1$ iff $i \in X$ ，else $a_{i}=0$
- 易证：g 为双射 在此处键入公式。
- 下证 $A \approx[0,1]$ ，定义函数 $h: A \rightarrow[0,1]$ ：

$$
h(a)=\sum_{i \in \mathbb{N}} a_{i}\left(\frac{1}{2}\right)^{i}
$$

易证 h 同为双射

$$
\text { 0. } a_{1} a_{2}, \ldots, a_{n} \ldots \text { [0,1]区间实数二进制表示 }
$$

[^0]: Theorem 20.6 Let A, B, C, and D be nonempty sets. If $A \cap B=\emptyset, C \cap D=\emptyset, A \approx C$,

