1-12 Partial Order and Lattice

Hengfeng Wei
hfwei@nju.edu.cn

Feb. 25, 2020

SM Problem 14.44: Consistent Enumerations

Suppose the following are three consistent enumerations of an ordered set $A=\{a, b, c, d\}$:

$$
\begin{array}{lllll}
A_{1}: & a & b & c & d \\
A_{2}: & a & c & b & d \\
A_{3}: & a & c & d & b
\end{array}
$$

Assuming the Hasse diagram D of A is connected, draw D.

$$
\begin{aligned}
& b \prec_{A_{1}} c \wedge c \prec_{A_{2}} b \Longrightarrow b \|_{A} c \\
& d \prec_{A_{3}} b \wedge b \prec_{A_{2}} d \Longrightarrow b \|_{A} d
\end{aligned}
$$

$\#=6$

$\#=3$

Theorem

Every partial ordering on a set X is the intersection of the total orders on X containing it.

SM Problem 14.62: Isomorphic Well-Ordered Sets
Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f: A \rightarrow B$.
$\begin{aligned} & \text { Well-ordered } \Longrightarrow \text { Totally-ordered } \\ &(\mathbb{N},<)\end{aligned}$
Totally-ordered \nRightarrow Well-ordered

$$
(\mathbb{Z},<)
$$

Q : What about "totally-ordered" isomorphic sets?

SM Problem 14.62: Isomorphic Well-Ordered Sets

 Suppose A and B are well-ordered isomorphic sets. Show that there is only one isomorphic mapping $f: A \rightarrow B$.$$
f: A \rightarrow B
$$

Make use of the "well-ordered" property.

$$
\begin{gathered}
a \leftarrow \min A \quad b \leftarrow \min B \\
f(a)=b \\
f(\min (A \backslash\{a\}))=\min (B \backslash\{b\}) \\
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
\end{gathered}
$$

$$
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
$$

$$
f: A \xrightarrow[\text { onto }]{\text { 青 }} B
$$

f is unique
For any isomorphic mapping $g: A \rightarrow B$, we show that $g=f$.

$$
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
$$

Theorem (Mathematical Induction for Well-Ordered Sets)
Let $\mathcal{S}=(S,<)$ be a well-ordered set. If $P(x)$ is a predicate such that

1. $P(\min S)$ holds,
2. $(\forall y<x: P(y)) \Longrightarrow P(x)$,
then $\forall x \in S: P(x)$.

$$
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
$$

We need to prove $\forall x \in A: g(x)=f(x)$.
By induction on the structure of A.

$$
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
$$

Base Case: Consider $a \leftarrow \min A$.
We need to show that $g(a)=f(a)=b$.

Suppose by contradiction that $g(a)=b_{1} \neq b$.

$$
\exists a_{1}>a: g\left(a_{1}\right)=b<b_{1}=g(a)
$$

$$
f(x)=\min (B \backslash f(\{a \in A: a<x\}))
$$

Induction Hypothesis: $\forall y<x: g(y)=f(y)$

Induction Step: We need to show that $g(x)=f(x)$.
Suppose by contradiction that $g(x) \neq f(x)$.

$$
\begin{gathered}
f(x)=\min (\cdot) \triangleq M \\
g(x)>f(x)=M \\
\exists x_{1}>x: g\left(x_{1}\right)=M=f(x)<g(x)
\end{gathered}
$$

Definition (Lattice)

A lattice is an algebra $\mathcal{L}=(L, \wedge, \vee)$ satisfying,

$$
\forall a, b, c \in L
$$

Idempotency:

$$
a \wedge a=a \quad a \vee a=a
$$

Commutativity:

$$
a \wedge b=b \wedge a \quad a \vee b=b \vee a
$$

Associativity:

$$
(a \wedge b) \wedge c=a \wedge(b \wedge c) \quad(a \vee b) \vee c=a \vee(b \vee c)
$$

Absorption:

$$
a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a
$$

$$
a \wedge(a \vee b)=a \quad a \vee(a \wedge b)=a
$$

(1) Very useful in lattice computations

$$
a \wedge a=a \wedge(a \vee(a \wedge b))=a
$$

(2) The only laws connecting \wedge and \vee

$$
\wedge \text {-semilattice } \quad \vee \text {-semilattice }
$$

(3) Ensure that \wedge and \vee induce the same order on L

$$
\begin{gathered}
a \leq b \Longleftrightarrow a \wedge b=a \\
a \leq b \Longleftrightarrow a \vee b=b \\
a \wedge b=a \Longleftrightarrow a \vee b=b
\end{gathered}
$$

SM Problem 14.72: "Weak" Distributive Laws
Prove that for any lattice L :

$$
\begin{aligned}
& a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \\
& a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)
\end{aligned}
$$

$$
\begin{aligned}
& a \vee(b \wedge c) \leq a \vee b \\
& a \vee(b \wedge c) \leq a \vee c
\end{aligned}
$$

Thank You!

