问题讨论

2013/12/20

Problem 13.3

Which of the following are functions? Give reasons for your answers.

- (a) Define f on \mathbb{R} by $f = \{(x, y) : x^2 + y^2 = 4\}.$
- (b) Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 1/(x+1).
- (c) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = x + y.
- (d) The domain of f is the set of all closed intervals of real numbers of the form [a, b], where $a, b \in \mathbb{R}$, $a \le b$, and f is defined by f([a, b]) = a.

- (e) Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by f(n, m) = m.
- (f) Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \ge 0 \\ x & \text{if } x \le 0 \end{cases}.$$

(g) Define $f: \mathbb{Q} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}.$$

- (h) The domain of f is the set of all circles in the plane \mathbb{R}^2 and, if c is such a circle, define f by f(c) = the circumference of c.
- (i) (For students with a background in calculus.) The domain of f is the set of all polynomials with real coefficients, and f is defined by f(p) = p'. (Here p' is the derivative of p.)
- (j) (For students with a background in calculus.) The domain of f is the set of all polynomials and f is defined by $f(p) = \int_0^1 p(x) dx$. (Here $\int_0^1 p(x) dx$ is the definite integral of p.)

Let *A* and *B* be sets. A **function** *f* from *A* to *B* is a relation from *A* to *B* satisfying

- (i) for all $a \in A$, there exists $b \in B$ such that $(a, b) \in f$, and
- (ii) for all $a \in A$, and all $b, c \in B$, if $(a, b) \in f$ and $(a, c) \in f$, then b = c.

Problem 13.4.

Let $f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$ be defined by

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}.$$

Prove that *f* above is a well-defined function.

Well-ordering principle of \mathbb{N} .

Every nonempty subset of the natural numbers contains a minimum.

Problem 13.5.

Let X be a nonempty set and let A be a subset of X. We define the **characteristic function** of the set A by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in X \setminus A \end{cases}.$$

- (a) Since this is called the characteristic function, it probably is a function, but check this carefully anyway.
- (b) Determine the domain and range of this function. Make sure you look at all possibilities for *A* and *X*.

Problem 13.13.

Let X be a nonempty set. Find all relations on X that are both equivalence relations and functions.

Problem 14.8.

For each of the functions below, determine whether or not the function is one-to-one and whether or not the function is onto. If the function is not one-to-one, give an explicit example to show what goes wrong. If it is not onto, determine the range.

- (a) Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = 1/(x^2 + 1)$.
- (b) Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin(x)$. (Assume familiar facts about the sine function.)
- (c) Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by f(n, m) = nm.
- (d) Define $f : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by f((x, y), (u, v)) = xu + yv. (Do you recognize this function?)
- (e) Define $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $f((x, y), (u, v)) = \sqrt{(x u)^2 + (y v)^2}$. (Do you recognize this function?)
- (f) Let A and B be nonempty sets and let $b \in B$. Define $f : A \to A \times B$ by f(a) = (a, b).
- (g) Let X be a nonempty set, and $\mathcal{P}(X)$ the power set of X. Define $f: \mathcal{P}(X) \to \mathcal{P}(X)$ by $f(A) = X \setminus A$.
- (h) Let B be a fixed proper subset of a nonempty set X. Define a function $f: \mathcal{P}(X) \to \mathcal{P}(X)$ by $f(A) = A \cap B$.
- (i) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

Problem 14.12.

Let a, b, c, and d be real numbers with a < b and c < d. Define a bijection from the closed interval [a, b] onto the closed interval [c, d] and prove that your function is a bijection.

复习

- 人解题和计算机解题
 - Polya's Four Steps for Problem Solving
- 计算机解题与数学
 - -精确
 - 形式化
 - 分析结果
- 推理
- 常用的证明方法(反证,归纳)

- 基本的算法结构
 - 如何确定循环过程是正确的(循环不变式)
 - 顺序、分支、循环、递归
- 高级程序设计语言的抽象
 - 数据抽象
 - 控制抽象
- 不同的程序设计风格
- 集合及其运算
- 函数