Second Isomorphism Theorem

151220102 万子文

Description:

Let H be a subgroup of a group G(not necessarily normal in G) and N a normal subgroup of G. Then HN is a subgroup of $G,H \cap G$ is a normal subgroup of H, and:

$$H/H \cap N \cong HN/N$$

1.HN is a subgroup of G:

Proposition 3.9:

- (1) The identity e of G is in H.
- (2) If $h_1, h_2 \in H$, then $h_1 h_2 \in H$.
- (3) If $h \in H$, then $h^{-1} \in H$.

Proof:

$$(1)e \in H, e \in N \Rightarrow e \in HN$$

(2) Suppose that $h_1n_1, h_2n_2 \in HN$,

$$(h_1n_1)(h_2n_2) = h_1h_2(h_2^{-1}n_1h_2)n_2 \in HN$$

$$(h_1h_2 \in H(h_2^{-1}n_1h_2)n_2 \in N)$$

(3) Suppose that $h \in H, n \in N$,

$$(hn)^{-1} = n^{-1}h^{-1} = h^{-1}(hn^{-1}h^{-1})$$

Since N is normal, $hn^{-1}h^{-1} \in N$, so $(hn)^{-1} \in HN$.

$2.H \cap N$ is normal in H:

Theorem 10.1 For all $g \in G, gNg^{-1} \subset N$.

Let $h \in H, n \in N \cap H, hnh^{-1} \in H$

Since N is normal in $G,hnh^{-1} \in N$

 $\Rightarrow hnh^{-1} \in H \cap N \Rightarrow H \cap N$ is normal in H.

$$H/H \cap N \cong HN/N$$

First Isomorphism TheoremIf $\psi: G \to H$ is a group homomorphism with $K = ker\psi$, then K is normal in G. Let $\phi: G \to G/K$ be the canonical homomorphism. Then there exists a unique isomorphism $\eta: G/K \to \psi(G)$ such that $\psi = \eta \phi$.

Consider if we have $\psi: H \to HN/N$

- $(1)\psi$ is a group homomorphism
- $(2)ker\psi = H \cap N$
- $(3)\psi$ is onto

Now we define a map $\psi: H \to HN/N$ by $h \to hN$.

 $(1)\psi$ is a homomorphism:

$$\psi(h_1 h_2) = h_1 h_2 N = h_1 N h_2 N = \psi(h_1) \psi(h_2)$$

- $(2)Ker\psi = \{h \in H, h \in N\} = H \cap N$
- (3) The map is onto. Any coset hnN = hN is the image of h in H.
 So,we have HN/N ≅ H/H ∩ N.

Thank you