3-1 Dynamic Programming J

Jun Ma

majun@nju.edu.cn

September 19, 2020

Jun Ma (maju u.edu.cn) 3-1 Dynamic Programming September 19, 2020 1/23

-
TC 15.1-1

Show that equation T'(n) = 2" follows from equation

n—1
T(n) =1+ Y T(j) and the initial condition 7°(0) = 1.
7=0

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 2/23

-
TC 15.1-1

Show that equation T'(n) = 2" follows from equation

n—1
T(n) =1+ Y T(j) and the initial condition 7°(0) = 1.
7=0

Proof.

T(n) =1 +:§T(j) — 14+ T(n—1)+ :g:r(j) — 9T(n—1)
=2(2"(n—2))=---=2"T(0) = 2"

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 2/23

-
TC 15.1-3

Consider a modification of the rod-cutting problem in which, in
addition to a price p; for each rod, each cut incurs a fixed cost of c.
The revenue associated with a solution is now the sum of the prices of
the pieces minus the costs of making the cuts. Give a DP algorithm to
solve this modified problem.

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 3/23

-
TC 15.1-3

Consider a modification of the rod-cutting problem in which, in
addition to a price p; for each rod, each cut incurs a fixed cost of c.
The revenue associated with a solution is now the sum of the prices of
the pieces minus the costs of making the cuts. Give a DP algorithm to
solve this modified problem.

» Original:
More generally, we can frame the values r, for n > 1 in terms of optimal rev-
enues from shorter rods:

Iy =max (Pp. 1y + Inm1, 72 + oy o v s Fue1 +11) - (15.1)

Jun Ma (maju > 3-1 Dynamic Programming September 19, 2020 3/23

-
TC 15.1-3

Consider a modification of the rod-cutting problem in which, in
addition to a price p; for each rod, each cut incurs a fixed cost of c.
The revenue associated with a solution is now the sum of the prices of
the pieces minus the costs of making the cuts. Give a DP algorithm to
solve this modified problem.

» Original:
More generally, we can frame the values r, for n > 1 in terms of optimal rev-
enues from shorter rods:

Iy =max (Pp. 1y + Inm1, 72 + oy o v s Fue1 +11) - (15.1)

» With fixed cost of c:

Tp = max (Pn,T1 + -1 — ¢, T2+ Tp—2 — Cy ooy Tn—1 + 71 — C)

Jun Ma (maju > 3-1 Dynamic Programming September 19, 2020 3/23

-
TC 15.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY (A, s,1,7) that
actually performs the optimal matrix-chain multiplication, given the
sequence of matrices (A1, A, -, Ay), the s table computed by
MATRIX-CHAIN-ORDER, and the indices i and j . (The initial call
would be MATRIX-CHAIN-MULTIPLY (A4, s,1,n).)

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 4/23

-
TC 15.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY (A, s,1,7) that
actually performs the optimal matrix-chain multiplication, given the
sequence of matrices (A1, A, -, Ay), the s table computed by
MATRIX-CHAIN-ORDER, and the indices i and j . (The initial call
would be MATRIX-CHAIN-MULTIPLY (A4, s,1,n).)

Answer.

1: procedure MATRIX-CHAIN-MULTIPLY (A, s, 14, j)

2 if i=j then

3 return A[i]

4: b «MATRIX-CHAIN-MULTIPLY (A4, s, 1, s, 7])

5 ¢ < MATRIX-CHAIN-MULTIPLY (A4, s, s[¢, j] + 1,)
6 return b * ¢

0

v

Jun Ma (maju u.edu.cn) 3-1 Dynamic Programming September 19, 2020 4/23

TC 15.2-4

Describe the subproblem graph for matrix-chain multiplication with an

input chain of length n. How many vertices does it have? How many
edges does it have, and which edges are they?

Answer.

» How many vertices does it have?

v

Jun Ma (majun 1.edu.cn)

3-1 Dynamic Programming September 19, 2020 5/23

TC 15.2-4

Describe the subproblem graph for matrix-chain multiplication with an

input chain of length n. How many vertices does it have? How many
edges does it have, and which edges are they?

Answer.

» How many vertices does it have?

» The vertices of the subproblem graph are the ordered pairs V;j,

where 7 < j
n n
+1
> 331 =
i=1j=i

» How many edges does it have?

v

Jun Ma (majun@nju.edu.cn)

3-1 Dynamic Programming September 19, 2020 5/23

TC 15.2-4

Describe the subproblem graph for matrix-chain multiplication with an

input chain of length n. How many vertices does it have? How many
edges does it have, and which edges are they?

Answer.

» How many vertices does it have?

» The vertices of the subproblem graph are the ordered pairs V;j,

where 7 < j

LA n(n+1)
SPIPNEEC S

i=1j=i

» How many edges does it have?

> A subproblem V;; has exactly j — ¢ subproblems.
> Y3 (- = e

i=1j=i

O

v

Jun Ma (majun@nju.edu.cn)

3-1 Dynamic Programming September 19, 2020 5/23

-
TC 15.3-3

Consider a variant of the matrix-chain multiplication problem in which
the goal is to parenthesize the sequence of matrices so as to maximize,
rather than minimize, the number of scalar multiplications. Does this
problem exhibit optimal substructure?

u.edu.cn) 3-1 Dynamic Programming September 19, 2020 6/23

-
TC 15.3-3

Consider a variant of the matrix-chain multiplication problem in which
the goal is to parenthesize the sequence of matrices so as to maximize,
rather than minimize, the number of scalar multiplications. Does this
problem exhibit optimal substructure?

Answer.
Yes! 1)

u.edu.cn) 3-1 Dynamic Programming September 19, 2020 6/23

-
TC 15.3-5

Suppose that in the rod-cutting problem of Section 15.1, we also had
limit [; on the number of pieces of length ¢ that we are allowed to
produce, for ¢ = 1,2,--- ,n. Show that the optimal-substructure
property described in Section 15.1 no longer holds.

Jun Ma (majt u.edu.cn) 3-1 Dynamic Programming September 19, 2020 7/23

-
TC 15.3-5

Suppose that in the rod-cutting problem of Section 15.1, we also had
limit [; on the number of pieces of length ¢ that we are allowed to
produce, for i = 1,2,--- ;n. Show that the optimal-substructure
property described in Section 15.1 no longer holds.

Proof.

» Sub-problems can not be solved independently.
» The number of pieces of length li used on one side of the cut affects
the number allowed on the other.

O

v

Jun Ma (majt u.edu.cn) 3-1 Dynamic Programming September 19, 2020 7/23

|
TC 15.3-6(Exchange Currency)

» n different currencies

v

Given an exchange rate r;; for each pair of currencies 7 and j

» Let c; be the commission that you are charged when you make k
trades.

> Try to find the best sequence of exchanges from currency 1 to
currency n trades.

$Hrere
PN v
¥(d(m

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 8/23

|
TC 15.3-6(Exchange Currency)

Q1

The problem exhibits optimal substructure if ¢; = 0 for all
k=1,2,--,n.

(Assume no loop has an overall exchange rate greater than 1)

Proof.
> Let k denote a currency which appears in an optimal sequence S
of trades to go from currency 1to currency n
> pp:l—---—=>kand g k—---—n

» Then p; and g; are both optimal sub-sequences. Take p; for
instance:

> Suppose that py wasn’t optimal but that p) was.
» Then, the sequence pj.g; would be a sequence better than S

The same argument applies to qx

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 9/23

|
TC 15.3-6(Exchange Currency)

Q2
The problem does not necessarily exhibit optimal substructure if ¢,
are arbitrary values.

» I do not understand the problem. How is ¢ used?)

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 10/23

-
TC 15.4-3

Give a memorized version of LCS-LENGTH that runs in O(mn) time.)

u.edu.cn) 3-1 Dynamic Programming September 19, 2020 11/23

-
TC 15.4-3

Give a memorized version of LCS-LENGTH that runs in O(mn) time.)

1: procedure MEM-LCS-LENGTH(X, Y, 4, j, ¢, b)

2 if c[¢,j] > —1 then

3 return c[i, j]

4: else if i =0 or j =0 then

5: cli,j] < 0

6: else if z[i] = y[j] then

7 clt, j] +MEM-LCS-LENGTH(X,Y,i — 1,5 — 1,¢,b)+1
8

U NG
9: else
10: p < MEM-LCS-LENGTH(X,Y,? — 1,7, ¢,b)
11: q < MEM-LCS-LENGTH(X, Y, %, — 1,¢,b)
12: cli, j] + max (p, q)
13: if p > g then
14: bli,j) « “ 1"
15: else
16: bli, j] < “ «"
17: return c[i, j|

Jun Ma (maju 5 3-1 Dynamic Programming September 19, 2020 11/23

-
TC 15.4-5

Give an O(n?)-time algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers.

Answer.

u.edu.cn) 3-1 Dynamic Programming September 19, 2020 12 /23

-
TC 15.4-5

Give an O(n?)-time algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers.

Answer.

u.edu.cn) 3-1 Dynamic Programming September 19, 2020

12/23

-
TC 15.4-5

Give an O(n?)-time algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers.

Answer.

procedure LIS(A)
B < SORT(A)
¢,b + LCS-LENGTH(A, B)
PRINT-LCS(b, A, A.length, B.length)

Jun Ma (maju 3 3-1 Dynamic Programming September 19, 2020 12 /23

[LCS— LIS ?

Jun Ma (majur] 3-1 Dynamic Programming September 19, 2020 13/23

LCS— LIS 7

An example
A= hab,eafvgab
B=b,e h,i,9,2,b
LCS(A,B) =b,e,g,b

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 13/23

LCS— LIS 7

An example
A= hab,eafvgab
B=b,e h,i,9,2,b
LCS(A,B) =b,e,g,b

Transformation

» Build two maps from A:

> M = {<h71> ; <b7 {6,2}> 7<€ﬂ3>7<f74>) <g75>}
> My = {<1’h> ; <2’b>) <3’e> s <47 f> ’ <5vg> y <6’b>}

» Apply M; to B and obtain B’ =6,2,3,1,—,5,—,6,2
> Find LIS of B', LIS(B') = 2,3,5,6
» Apply M5 to B’ and obtain LOS(A, B) = b,e,g,b

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 13/23

LCS/LIS in O(nlgn)

TC 15.4-6

Give an O(nlgn)-time algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers.

Jun Ma (majun@nju.edu.cn)

3-1 Dynamic Programming September 19, 2020 14 /23

LCS/LIS in O(nlgn)

TC 15.4-6

Give an O(nlgn)-time algorithm to find the longest monotonically
increasing subsequence of a sequence of n numbers.

Hint
> S =
{s| s is a monotonically increasing sub-sequence of A[1, - --]}
> Sij = {s € Si|s.length = j}
> c;j = minges,; LASTCHAROF(s)
Cij = S[l] ity = 1§k§3{?[1i?<0i71k(k
C(i—1); otherwise

Jun Ma (majun@nju.edu.cn)

3-1 Dynamic Programming September 19, 2020 14 /23

-
TC 15.5-1

Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST(root)
which, given the table root, outputs the structure of an optimal binary
search tree.

root k5 is the root

ky is the left child of k,
d, is the left child of k,
d, is the right child of &,
ks is the right child of k,
ky is the left child of ks
k5 is the left child of k4
d, is the left child of k5
ds is the right child of k;
d, is the right child of k,
ds is the right child of ks

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 15/23

-
TC 15.5-1

procedure CONSTRUCT-OPTIMAL-BST(root,i,7,p)
if p=0 then
PRINT(“k”+p+* is the root”)
else if ¢ > j then
if j < p then
PRINT(“d”+j+ is the left child of k”+p)
else
PRINT(“d”+j+* is the right child of k”+p)

else
if j < p then
PRINT(“k”+root[i, 7]+ is the left child of k”+p)
else
PRINT(“k”+root[i, j]+* is the right child of k”+p)
CONSTRUCT-OPTIMAL-BST (root,i,root[i, j]-1,rooti, j])
CONSTRUCT-OPTIMAL-BST (root,root[t, j|+1,j,root[i, j])

Jun Ma (majt 1ju.edu.cn) 3-1 Dynamic Programming September 19, 2020 16 /23

R
Printing neatly

Consider the problem of neatly printing a paragraph with a
monospaced font (all characters having the same width) on a printer.

» The input text is a sequence of n words of lengths ly,1s,- - , 5,
measured in characters.

> We want to print this paragraph neatly on a number of lines that
hold a maximum of M characters each.

> neatness: If a given line contains words ¢ through j , where ¢ < j,
and we leave exactly one space between words, the number of
extra space characters at the end of the line is M — j+i— Y7 _. I

» minimize the sum, over all lines except the last, of the cubes of
the numbers of extra space characters at the ends of lines.

Jun Ma (majun@nju.edu.cn) 3-1 Dynamic Programming September 19, 2020 17/23

(Sub-)problems?

Jun Ma (majur] 3-1 Dynamic Programming September 19, 2020 18 /23

15-4 Printing neatly

Consider the problem of neatly printing a paragraph with a monospaced font (all
characters having the same width) on a printer. The input text is a sequence of n
words of lengths /4, /5, ..., [,, measured in characters. We want to print this para-
graph neatly on a number of lines that hold a maximum of M characters each. Our
criterion of “neatness” is as follows. If a given line contains words i through j,
where i < j, and we leave exactly one space between words, the number of extra
space characters at the end of the line is M — j + i — Y ; _; lx, which must be
nonnegative so that the words fit on the line. We wish to minimize the sum, over
all lines except the last, of the cubes of the numbers of extra space characters at the
ends of lines. Give a dynamic-programming algorithm to print a paragraph of n
words neatly on a printer. Analyze the running time and space requirements of
your algorithm.

Optimal Substructure

Jun Ma (majt 1ju.edu.cn) 3-1 Dynamic Programming September 19, 2020 19/23

15-4 Printing neatly

’Consider the problem of neatly printing a paragraph with a monospaced font (all
characters having the same width) on a prinfer. The input text is a sequence of 7
words of lengths /4, (5, ..., [,, measured in characters. We want to print this para-
graph neatly on a number of lines that h@lgsa maximum of M characters each. Our
criterion of “neatness” is as follows. If a given line contains words i through j,
where i < j, and we leave exactly one space between words, the number of extra
space characters at the end of the line is M — j + i — Y j _; lr, which must be
nonnegative so that the words fit on the line. We wish to minimize the sum, over
all lines except the last, of the cubes of the numbers of extra space characters at the
ends of lines. Give a dynamic-programming algorithm to print a paragraph of n
words neatly on a printer. Analyze the running time and space requirements of
your algorithm.

first line — last line

Jun Ma (maju > 3-1 Dynamic Programming September 19, 2020 20/23

15-4 Printing neatly

Consider the problem of neatly printing a paragraph with a monospaced font (all
characters having the same width) on a printer. The input text is a sequence of n
words of lengths /4, (5, ..., [,, measured in characters. We want to print this para-
graph neatly on a number of lines that hold a maximum of M characters each. Our
criterion of “neatness” is as follows. If a given line contains words i through j,
where i < j, and we leave exactly one space between words, the number of extra
space characters at the end of the line is M — j + i — Y j _; lr, which must be
nonnegative so that the words fit on the line. We wish to minimize the sum, over
all lines except the last, of the cubes of umbers of extra space characters at the
ends of lines. Give a dynamlc program ing algonthm to print a paragraph of n

last line — first line

Jun Ma (majun 1.edu.cn) 3-1 Dynamic Programming September 19, 2020 21 /23

» Define extrasli,j] =M —j+i— Y 1_; li
» lcli,j]: cost of including a line containing words ¢ through j
00 if extras[i,j] <0
le[i,jl=¢ 0 if j = n and extras|i,j| > 0
extras(i,j] otherwise

» c[j]: the cost of an optimal arrangement of words 1, ..., j

i 0 if j =0,
I ming<ie; (cli — 1) + Iefi,) if 5 > 0.

Jun Ma (maju u.edu.cn) 3-1 Dynamic Programming September 19, 2020 22 /23

PRINT-NEATLY (/, n, M)
> Compute extras[i, jlfor1 <i < j <n.
fori < lton
do extras[i,i] <« M —;
for j —i+1ton
do extras[i, j] < extras[i, j — 1] —1; —

> Compute /c[i, jlforl <i < j <n.
fori < lton
do for j < iton
do if extras[i, j] <0
then ic[i, j] < o0
elseif j = n and extras[i, j] >0
then Ic[i, j] <0
else Ic[i, j] < (extras[i, j])?

> Compute c[j]and p[j]forl < j <n.

c[0] <0

for j < lton

do c[j] < o
fori < 1toj
do if c[i — 1]+ lc[i, j] < c[j]
then c[j] < c[i — 11+ Ic[i, j]
pljl <i
return ¢ and p

https://blog.csdn.net/yxc135/article/details /9621643
Jun Ma (majur o@ 3-1 Dynamic Programming September 19, 2020 23/23

=]
3-1 Dynamic Programming

=

September 19, 2020

23/23

