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011100
H=[11001 0
101001 H=(1111)

X = (21, T9, T3, Tq, T5, Tg)!

X = (x1; X2, X3, x4)T

To + g + 14
O0=Hx= |21+ 29+ 23 O:Hx:x1+x2+x3+x4
T+ T3+ g

Theorem 8.7 Let H € M,,,xn(Z2) be a canonical parity-check matriz. Then
Null(H) consists of all x € 7§ whose first n —m bits are arbitrary but whose
last m bits are determined by HX = 0. FEach of the last m bits serves as an

even parity check bit for some of the first n — m bits. Hence, H qives rise
to an (n,n —m)-block code.
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The following general algorithm generates a single—error correcting (SEC) code for any number of bits.
1. Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.
¥rite the bit numbers in binary: 1, 10, 11, 100, 101, etc.

3. All bit positions that are powers of two (have only one 1 bit in the binary form of their position)
are parity bits: 1, 2, 4, 8, etec. (1, 10, 100, 1000)

All other bit positions, with two or more 1 bits in the binary form of their position, are data bits.
5. Each data bit is included in a unique set of 2 or more parity bits,

as determined by the binary form
of its bit position.

Bit position 1 2 3/4 5 67T 8 910111213 14 |15 16 17| 18 19 20
Encoded data bits pl p2 dl p4 d2 d3 d4 p8 d5 d6 d¥ d8 d9 di0 dl1l pl6 d12 d13 di4 d15

pl X X X X X X X X X X
Parity p2 [ XX Gl . £ £ £
bit pd X|X|X (X X|X| X | X X
coverage p8 X X X X X X X X
pl6 X | X | X | X | X
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Bit position 102 3 4,5 6 T 1 10 1
Encoded data bits pl p2 dl p4 d2 d3 d4 1 0 1 1
pL X X X X 100 0 1010101
Parity p2 X | X X X
bit pd ¥ XX X G 0111 H 0110011
01 0 O 0O 001 1 1 1
- T
x=(d1,d2,d3,d4) T
- T
y=(p1,p2,d1,p4,d2,d3,d4) 000 1
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A code is a linear code if it is determined by the null space of some
matrix H € M, «n(Zo9).

Prwtd “linear” fEX 2 AamE?

— codewordHlinear combinationf/}7&codeword

— Bf: Frf codewordfd % I — linear subspace

linear subspacefnull space of matrixZ [A] /2T AR R ?
— B Mlinear subspace#B A PLZR R A FEANFERE I null space
IAEARIE b 2 linear code ) 28 — AN -Ab 1 1y 2

— BEHRJTE: Hy=0
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Theorem 8.5 Let dyin be the minimum distance for a group code C'. Then
dmin 15 the minimum of all the nonzero weights of the nonzero codewords in

C'. That s,
dmin = min{w(X) : X # 0}.

Proor. Observe that

dmin = min{d(X,y) : X # ¥y}

= min{d(X,y) : x+y # 0}
min{w(X+y):x+y#0}
= min{w(z) : z # 0}.

. ffﬁﬁz%?ﬂﬁ/l\%fi HNEDN=-S'@RLCY
Xt linear code ) 58 N Ab !
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— We will assume that transmission errors are rare, and, that when they do
occur, they occur independently in each bit; that is, if p is the probability
of an error in one bit and g is the probability of an error in a different bit,
then the probability of errors occurring in both of these bits at the same
time is pg. We will also assume that a received n-tuple is decoded into a
codeword that is closest to it; that is, we assume that the receiver uses
maximum-likelihood decoding.
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dmin = min{d(X,y) : X # ¥}
= min{d(X,y) : X +y # 0}
=min{w(X+y):Xx+y #0}
= min{w(z) : z # 0}.

Theorem 8.12 Let H be an m X n binary matriz. Then the null space of
H s a single error-detecting code if and only if no column of H consists
entirely of zeros. He; #0

Theorem 8.13 Let H be a binary matriz. The null space of H is a single
error-correcting code if and only if H does not contain any zero columns and
no two columns of H are identical.

0=H(e; +e;) =He; + He;
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Theorem 8.13 Let H be a binary matriz. The null space of H is a single
error-correcting code if and only if H does not contain any zero columns and

no two columns of H are identical.

R, R XD FRIETTR T, H=(A|l,) & ZHE L5172
BATH 4 A BB A 22 el

XN TER R KSR EZ /A7 @2m(1+m) / (2m-1)
Hamming code ') ix K9t R g2/ 7

Bit position 12 3/ 4 5 6 7T 8 9 10111213 14 15 16 17 18 19 20

Encoded data bits pl p2 dl pd d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11 pl6 d12 d13 d14|d15 Block 27 — ] where p > 2
o x| [x| [x] [z] [=] [&]| [z X X X length
o 2 %X XX %X | x XX Hessage 7 _r—1
bit p4 x|x[xx x| x|z X length
ov 8 £z |x|x|x|x|x|x Rate 1-7r/(2"-1)
p16 ¥ X X K| X

PRBEFR B g b 2 . Hamming code 58 /5 ) /7 VE 0 2
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Theorem 8.15 Let H € M,,,xn(Z2) and suppose that the linear code cor-
responding to H is single error-correcting. Let v be a received n-tuple that
was transmitted with at most one error. If the syndrome of r is 0, then no
error has occurred; otherwise, if the syndrome of v is equal to some column
of H, say the ith column, then the error has occurred in the ith bit.

Hx=H(c+e)=Hc+He=0+He=He.
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