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— To obtain a required approximation ratio or correct results efficiently

for all input instances rather than merely with a high probability.

— Without any essential increase in the amount of computational
resources.
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Theorem 5.4.2.2. Let (12, Prob) be a probability space and X,,..., X, be
random wvariables over (f2, Prob) such that 2 = {(X; = a1,..., X, =
an)| oy € {0,1} fori = 1,...,n}. Let k be a positive integer, 2 < k < n,
and let q be a prime power such that ¢ > n. Let GF(q) = {ry,rq,...,1q} be
the finite field of q elements. Let

Aiy = {r1,72,...,7q,} and A; o = GF(q) — Az,

where d; = [q - Prob [X; = 1] - 3].

Then, the probability space (S, Pr), where S = {p|p is a polynomial over
GF(q) with degree at most k — 1} and Pr s the uniform distribution over S,
has the following properties:

(1) 15] = ¢*,
(it) fori=1,...,n, the random variables X/ : S — {0,1} defined by

X(p) =1 iff p(r:) € A;a

and
X (p) =0 iff p(r;) € Aip

satisfy the following properties:
a) X{,...,X. are k-wise independent,
b) |Pr[X] = o] — Prob[X; = o]| < 5 for every @ € {0,1}.
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Algorithm 5.4.2.5. RED{A)

Input:  An input w as for A.

Step 1:  Choose uniformly at random an element p from the probability space
(S, Pr) described in Theorem 5.4.2.2.
{Observe that this can be performed by [log, [S|] = O(k - log, q)
random bits. }

Step 2: Compute X|, X,,..., X, as described in (ii) of Theorem 5.4.2.2.

Step 3:  Run the algorithm A on w with the sequence of k-wise independent
random bits X, X5,..., X,

Output: The output of A computed in Step 3.

Deterministic simulation of A by probability space reduction,
PSR(A)

Input:  An input w consistent as an input of A.
Step 1. Create the probability space (S, Pr) as described in Theorem 5.4.2.2.

Step 2. for every p € S do
simulate RED(A) on w with the random choice p and save the
output Result(p).

Step 3:  Estimate the "right” output from all outputs computed in Step 2.
{Obviously, Step 3 depends on the kind of computing problem. If one
considers an optimization problem then the output with the best cost
is chosen. If A has been designed for a decidability problem, one has
to look on the probabilities of the answers “accept” and “reject”.}
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Algorithm 5.4.3.1. DEraAND-BRSMS-3

Input: A formula @ in 3-CNF over a set of variables {x,....2,}.
Step 1. Find a positive integer r such that

g:=2">n

and r is the smallest integer with the property 27 = n.
Btep 2: for ep=0to g—1 do
forey =0 tog—1do
for ¢ =0to g—1do
begin
for i =1 ton do
if cor® +eym +eg € {17, ,Tqs2} € GFq)

then ; =1

else z; = 0;
count the number of satisfied clauses of & by =,.,.... 24,
and save the assignment (cvp,...,an) with the maximal
number of satisfied clauses up till now.

end
Output: ay,..., 0.
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Finally, we observe that the derandomization method by the reduction of
the size of the probability space is quite general and very powerful. But the
complexity of the resulting deterministic algorithm may be too high. Already
O(n*) for a formula in 3-CNF of n variables may be too large. Thus, from
the practical point of view, the possibility of essentially reducing the number
of random bits (choices) in a randomized algorithm may be the main current

contribution of this method.
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Lemma 5.4.4.1. Let (12, Prob) be a probabaility space, and Xy.,..., X, and
Z be random wvariables as described above. If, for a given input w, 0 =
Aifbz... 0, € {l].l}“ is computed by the method of pessimistic estimators,
then

EZ|<EZXy =56 <EZIXy=5h.Xo=0] <---
= E[Z|X1 = ﬂ].l . __,Xn = ﬂ"] = Cmi(ﬂ&{!u}]

Proof. The fact that E[Z|X; = f,..., X, = G.) = cost{Az{w)) is obvious.
In what follows we prove for every i = 00,1,...,n — 1 that

ElZ|1Xy=01,.... X, =3 < EZ|1X1 = B1,.... Xi = 0;, Xi 1 = Bia]-
(5.38)
Since X, Xg,..., X, are considered to be independent, it can be easily ob-
served that

E:z|X1 =ik ,Xi' = ﬂ:;] =
P‘F'OI['I:X,;+1 = |] 'E:E|X1 =0y, .. X =0, i1 = 1] {
PTGI{]:X;;+1 = []] EL’ X] =-CI'1,...,X5 =-CI';1X;.] —UJ
for every o, ...,a; € {0,1}. Since Prob[X;+; = 1] = 1— Prob[X;.; = 0] and
the weighted mean of two numbers cannot be larger than their maximum we
obtain

EZ|\Xy=H,.... Xi=8] <
max{E[Z| X, = By,..., Xi = §i, Xiny = 1], (5.39)
EZ[Xy =051, X =58, X = 0]}

Since our choice for 3,4, corresponds to the choice of the maximum of the
conditional probabilities in (5.39), (5.39) directly implies (5.38). O
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Algorithm 5.4.4.2. CoND-FPrROB(A)

Input: A consistent input w for A.
Step 1: for i:=1 to n do
if E[Z|X) =0, ... Xio1 =i, X =1] >
E.-Errl.x-l:ﬂl ----- X,; 1;;:-'].; ]~X_;=D:
then 4, =1
else (3, :=10
Step 2: Simulate the work of A5 on w, where 3 = 3,52 ... ;.
Output: Ag(w).
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Algorithm 5.4.5.1. CCP

Input: @ and ay,...,a; € {0, l}i for some positive integer 3.
Step 1: for 7 =1 to m do
begin replace the variables z1, . . ., z; by the constants i1, . . ., au,
respectively, in the clause C; and denote by C;(a1,. .., ;) the
resulting simplified clause;
if Cj =0
then set E[Z;.le = {,. .. ,X,; = a‘;] =0
elseif C; =1
then set E[Z;| X1 = a1,...,. Xi =] := 1
else set E[Z;| X1 =o,.... X, =a;] i =1- %
where [ is the number of different variables appearing in

Cj(al,...,a,-).
end
Step 2 E[Zle = al,...,X,- = Ct!i] = Z?:l E[Z_,|X1 = al?...,X-g =
a',;].

Output: E[Z|X; = a1,...,X; = a4

11
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Algorithm 5.4.5.3. CCP-LP

Input: & and e; = ae(z;) for j = 1,...,n, where ae(x;) is the solution of
LP(#) for the Boolean variable x;, and 3, ...3; € {0,1}' for some
integer i, 1 < i< n.
Step 1: for 7 =1 to m do
begin replace the variables zy, . .., z; by the constants 3, ..., 3,
respectively, in the clause C'; and let C'(5,, ..., ;) = -.r;']‘ v-_a:?:v
R :c';"r" be the resulting simplified clause;
if ¢ =6 for some § € {0,1} {i.e, r =0}

t:hEl'l set H'Z_,|Xl = ,31,. . .._X, = I'lii‘. = 15
else set F|&;|X, =5..... X = 3] :=
1= 1y [y — ez, )|
end
Step 2: E[Z|X, = f,.... X, = 4] = E;nhl EZ;| Xy = G, .- X; =

;).
Output: E[Z|X; = f1,...,. X; =]

Algorithm 5.4.5.4. DER-RRRMS

Input:
Step 1:

A formula @ over X = {z),...,2,} in CNF, n e IN.

Formulate the instance @ of MAX-SAT as the instance LP(%) of the

problem of linear programming.

Step 2:  Solve the relaxed version of LP(&).

Step 3: Compute 3, ..., 3., such that E[ZT < EZXy=5/,... X, = )
by the strategy described in CoND-ProBs() and using CCP-LP to
compute the conditional probabilities.

Output: An assignment 3 ..., to X.

conditional probabilities (4

Algorithm 5.4.5.6.

Input:
Step 1:

Step 2:

Step 3:

A formula @ over X in CMF.

Compute an assighment & to X by CoOND-PROB{RSMS).

Estimate I{+) :=the number of clauses of & satisfied by .
Compute an assignment § to X by the algorithm DER-RRRMS.
Estimate I(4) :=the number of clauses of & satisfied by 4.

if I{+) = I{4) then output(vy)

else output(d).
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