Splay Trees

■ In balanced tree schemes, explicit rules are followed to ensure balance.

- In splay trees, there are no such rules.
- Search, insert, and delete operations are like in binary search trees, except at the end of each operation a special step called splaying is done.
■ Splaying ensures that all operations take $\mathrm{O}(\lg \mathrm{n})$ amortized time.
■ First, a quick review of BST operations...

BST: Search

BST: Insert

BST: Delete

Delete(32)

Has only one child: just splice out 32 .

BST: Delete

Delete(32)

BST: Delete

Has two children: Replace 65 by successor, 76 , and splice out successor.

Note: Successor can have at most one child. (Why?)

BST: Delete

Delete(65)

Splaying

■ In splay trees, after performing an ordinary BST Search, Insert, or Delete, a splay operation is performed on some node x (as described later).

- The splay operation moves x to the root of the tree.
- The splay operation consists of sub-operations called zig-zig, zig-zag, and zig.

$\underline{Z i g}-\mathrm{Zig}$

(Symmetric case too)
Note: x's depth decreases by two.

Zig-Zag

(Symmetric case too)
Note: x's depth decreases by two.

$\underline{\text { Zig }}$

x has no grandparent (so, y is the root)

Note: w could be NIL

(Symmetric case too)

Note: x's depth decreases by one.

Complete Example

Splay(78)
zig-zag

Complete Example

Splay Trees - 13

Complete Example

Splay Trees - 14

Complete Example

Complete Example

Complete Example

Complete Example

Splay(78)
zig

Complete Example

Splay(78)
zig

Result of splaying

■ The result is a binary tree, with the left subtree having all keys less than the root, and the right subtree having keys greater than the root.

- Also, the final tree is "more balanced" than the original.
- However, if an operation near the root is done, the tree can become less balanced.

When to Splay

■ Search:

- Successful: Splay node where key was found.
- Unsuccessful: Splay last-visited internal node (i.e., last node with a key).
■ Insert:
- Splay newly added node.

■ Delete:

- Splay parent of removed node (which is either the node with the deleted key or its successor).
- Note: All operations run in O(h) time, for a tree of height h.

Amortized Analysis Review

- Accounting Method

- Idea: When an operation's amortized cost exceeds it actual cost, the difference is assigned to certain tree nodes as credit.
- Credit is used to pay for subsequent operations whose amortized cost is less than their actual cost.
- Most of our analysis will focus on splaying.
- The BST operations will be easily dealt with at the end.

Review: Accounting Method

- Stack Example:

- Operations:
$\left.\begin{array}{l}\text { - } \operatorname{Push}(\mathrm{S}, \mathrm{x}) . \\ \text { - } \operatorname{Pop(S)} .\end{array}\right\}$ Can implement in $O(1)$ time.
- Multipop(S, k): if stack has s items, pop off min(s, k) items.

$\mathrm{s} \leq \mathrm{k}$
items

Accounting Method (Continued)

■ We charge each operation an amortized cost.
■ Charge may be more or less than actual cost.
■ If more, then we have credit.

- This credit can be used to pay for future operations whose amortized cost is less than their actual cost.
■ Require: For any sequence of operations, amortized cost upper bounds worst-case cost.
- That is, we always have nonnegative credit.

Accounting Method (Continued)

Stack Example:

Actual Costs:
Push:
Pop:
Multipop:
$\min (\mathrm{s}, \mathrm{k})$
1
1

Amortized Costs:
Push:
Pop:
Multipop:

For a sequence of n operations, does total amortized cost upper bound total worst-case cost, as required?

What is the total worstcase cost of the sequence?

Review: Potential method

Idea: View the bank account as the potential energy (à la physics) of the dynamic set.
Framework:

- Start with an initial data structure D_{0}.
- Operation i transforms D_{i-1} to D_{i}.
- The cost of operation i is c_{i}.
- Define a potential function $\Phi:\left\{D_{i}\right\} \rightarrow \mathrm{R}$, such that $\Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0$ for all i.
- The amortized cost \hat{c}_{i} with respect to Φ is defined to be $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$.

Potential method II

- Like the accounting method, but think of the credit as potential stored with the entire data structure.
- Accounting method stores credit with specific objects while potential method stores potential in the data structure as a whole.
- Can release potential to pay for future operations
- Most flexible of the amortized analysis methods.

Understanding potentials

$$
\hat{c}_{i}=c_{i}+\underbrace{\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)}_{\text {potential difference } \Delta \Phi_{i}}
$$

- If $\Delta \Phi_{i}>0$, then $\hat{c}_{i}>c_{i}$. Operation i stores work in the data structure for later use.
- If $\Delta \Phi_{i}<0$, then $\hat{c}_{i}<c_{i}$. The data structure delivers up stored work to help pay for operation i.

Amortized costs bound the true costs

The total amortized cost of n operations is

$$
\sum_{i=1}^{n} \hat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)
$$

Summing both sides.

Amortized costs bound the true costs The total amortized cost of n operations is

$$
\begin{aligned}
\sum_{i=1}^{n} \hat{c}_{i} & =\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)
\end{aligned}
$$

The series telescopes.

Amortized costs bound the true costs
The total amortized cost of n operations is

$$
\begin{aligned}
& \sum_{i=1}^{n} \hat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \\
&=\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) \\
& \geq \sum_{i=1}^{n} c_{i} \quad \text { since } \Phi\left(D_{n}\right) \geq 0 \text { and } \\
& \Phi\left(D_{0}\right)=0
\end{aligned}
$$

Stack Example: Potential

Define: $\phi\left(D_{i}\right)=\#$ items in stack Thus, $\phi\left(D_{0}\right)=0$.

Plug in for operations:

Ranks

$\square \mathrm{T}$ is a splay tree with n keys.

- Definition: The size of node v in T, denoted $\mathrm{n}(\mathrm{v})$, is the number of nodes in the subtree rooted at V. (In Sleator \& Tarjan Paper, there is a weight $w(i)$ attached to each node.)
- Note: The root is of size $2 \mathrm{n}+1$.

■ Definition: The rank of v, denoted $r(v)$, is $\lg (\mathrm{n}(\mathrm{v}))$.

- Note: The root has rank $\lg (2 n+1)$.

■ Definition: $r(T)=\sum_{v \in T} r(v)$.

Meaning of Ranks

■ The rank of a tree is a measure of how well balanced it is.

- A well balanced tree has a low rank.

■ A badly balanced tree has a high rank.

- The splaying operations tend to make the rank smaller, which balances the tree and makes other operations faster.
■ Some operations near the root may make the rank larger and slightly unbalance the tree.
- Amortized analysis is used on splay trees, with the rank of the tree being the potential.$(\Phi(\mathrm{T})=\mathrm{r}(\mathrm{T}))$

Credit Invariant

\square We will define amortized costs so that the following invariant is maintained.

Each node v of T has $\mathrm{r}(\mathrm{v})$ credits in its account.

- So, each operation's amortized cost $=$ its real cost + the total change in $\mathrm{r}(\mathrm{T})$ it causes (positive or negative).
\square Let $R_{i}=$ op. i's real cost and $\Delta_{i}=$ change in $r(T)$ it causes. Total am. cost $=\sum_{\mathrm{i}=1, \ldots, \mathrm{n}}\left(\mathrm{R}_{\mathrm{i}}+\Delta_{\mathrm{i}}\right)$. Initial tree has rank $0 \&$ final tree has non-neg. rank. So, $\sum_{i=1, \ldots n} \Delta_{i} \geq 0$, which implies total am. cost \geq total real cost.

What's Left?

\square We want to show that the per-operation amortized cost is logarithmic.
\square To do this, we need to look at how BST operations and splay operations affect $\mathrm{r}(\mathrm{T})$.

- We spend most of our time on splaying, and consider the specific BST operations later.
■ To analyze splaying, we first look at how r(T) changes as a result of a single substep, i.e., zig, zigzig, or zig-zag.
- Notation: Ranks before and after a substep are denoted $r(v)$ and $r^{\prime}(v)$, respectively.

Proposition 13.6

Proposition 13.6: Let δ be the change in $\mathrm{r}(\mathrm{T})$ caused by a single substep. Let x be the " x " in our descriptions of these substeps. Then,

- $\delta \leq 3\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)-2$ if the substep is a zig-zig or a zig-zag;
- $\delta \leq 3\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)$ if the substep is a zig.

Proof:

Three cases, one for each kind of substep...

Case 1: zig-zig

Only the ranks of x, y, and z change. Also, $r^{\prime}(x)=r(z)$, $r^{\prime}(y) \leq r^{\prime}(x)$, and $r(y) \geq r(x)$. Thus,

$$
\begin{aligned}
\delta & =r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z) \\
& =r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y) \\
& \leq r^{\prime}(x)+r^{\prime}(z)-2 r(x) . \quad\left({ }^{*}\right)
\end{aligned}
$$

Also, $n(x)+n^{\prime}(z) \leq n^{\prime}(x)$, which (by property of \lg), implies

$$
r(x)+r^{\prime}(z) \leq 2 r^{\prime}(x)-2, \text { i.e. }
$$

$$
\mathrm{r}^{\prime}(\mathrm{z}) \leq 2 \mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})-2 . \quad\left({ }^{* *}\right)
$$

If $\mathrm{a}>0, \mathrm{~b}>0$, and $\mathrm{c} \geq \mathrm{a}+\mathrm{b}$, then $\lg a+\lg b \leq 2 \lg c-2$.

By $\left({ }^{*}\right)$ and $\left({ }^{* *}\right), \delta \leq r^{\prime}(\mathrm{x})+\left(2 \mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})-2\right)-2 \mathrm{r}(\mathrm{x})$

$$
=3\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)-2
$$

Case 2: zig-zag

Only the ranks of x, y, and z change. Also, $r^{\prime}(x)=r(z)$ and $r(x) \leq r(y)$. Thus,

$$
\begin{align*}
\delta & =r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z) \\
& =r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y) \\
& \left.\leq r^{\prime}(y)+r^{\prime}(z)-2 r(x) . \quad{ }^{*}\right) \tag{*}
\end{align*}
$$

Also, $\mathrm{n}^{\prime}(\mathrm{y})+\mathrm{n}^{\prime}(\mathrm{z}) \leq \mathrm{n}^{\prime}(\mathrm{x})$, which (by property of lg), implies $\mathrm{r}^{\prime}(\mathrm{y})+\mathrm{r}^{\prime}(\mathrm{z}) \leq 2 \mathrm{r}^{\prime}(\mathrm{x})-2$.

By $\left({ }^{*}\right)$ and $\left({ }^{* *}\right), \delta \leq 2 r^{\prime}(\mathrm{x})-2-2 \mathrm{r}(\mathrm{x})$

$$
\leq 3\left(\mathrm{r}^{\prime}(\mathrm{x})-\mathrm{r}(\mathrm{x})\right)-2
$$

Case 3: zig

Only the ranks of x and y change.
Also, $r^{\prime}(y) \leq r(y)$ and $r^{\prime}(x) \geq r(x)$. Thus,

$$
\begin{aligned}
\delta & =r^{\prime}(x)+r^{\prime}(y)-r(x)-r(y) \\
& \leq r^{\prime}(x)-r(x) \\
& \leq 3\left(r^{\prime}(x)-r(x)\right) .
\end{aligned}
$$

Proposition 13.7

Proposition 13.7: Let T be a splay tree with root t , and let Δ be the total variation of $\mathrm{r}(\mathrm{T})$ caused by splaying a node x at depth d . Then,

$$
\Delta \leq 3(\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{x}))-\mathrm{d}+2
$$

Proof:

Splay (x) consists of $p=\lceil d / 2\rceil$ substeps, each of which is a zig-zig or zig-zag, except possibly the last one, which is a zig if d is odd.

Let $\mathrm{r}_{0}(\mathrm{x})=\mathrm{x}$'s initial rank, $\mathrm{r}_{\mathrm{i}}(\mathrm{x})=\mathrm{x}$'s rank after the $\mathrm{i}^{\text {th }}$ substep, and $\delta_{i}=$ the variation of $r(T)$ caused by the $i^{\text {th }}$ substep, where $1 \leq \mathrm{i} \leq \mathrm{p}$.
By Proposition 13.6, $\Delta=\sum_{i=1}^{p} \delta_{i} \leq \sum_{i=1}^{p}\left(3\left(r_{i}(x)-r_{i-1}(x)\right)-2\right)+2$
$=3\left(\mathrm{r}_{\mathrm{p}}(\mathrm{x})-\mathrm{r}_{0}(\mathrm{x})\right)-2 \mathrm{p}+2$
$\leq 3(r(t)-r(x))-d+2$

Meaning of Proposition

\square If d is small (less than $3(\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{x}))+2)$ then the splay operation can increase $r(t)$ and thus make the tree less balanced.
■ If d is larger than this, then the splay operation decreases $\mathrm{r}(\mathrm{t})$ and thus makes the tree better balanced.

- Note that $\mathrm{r}(\mathrm{t}) \leq \lg (2 \mathrm{n}+1)$

Amortized Costs

■ As stated before, each operation's amortized cost $=$ its real cost + the total change in $r(T)$ it causes, i.e., Δ.

- This ensures the Credit Invariant isn't violated.
\square Real cost is d , so amortized cost is $\mathrm{d}+\Delta$.
\square The real cost of d even includes the cost of binary tree operations such as searching.
\square Note: Δ can be positive or negative (or zero).
- If it's positive, we're overcharging.
- If it's negative, we're undercharging.

Another Look at Δ

$\Delta=$ the total change in $r(T) . r(T)=\sum_{v \in T} r(v)=\sum_{v \in T} \lg (n(v))$

$$
=\theta\left(\prod_{n}(v)\right.
$$

Consider this example:

$$
\begin{aligned}
r(T) & =\lg (4 \cdot 2 \cdot 1 \cdot 1) \\
& =\lg (8)
\end{aligned}
$$

Unbalancing the Tree

■ In fact, a sequence of zig operations can result in a completely unbalanced linear tree. Then a search operation can take $O(n)$ time, but this is OK because at least n operations have been performed up to this point.

A Bound on Amortized Cost

We have:

Amortized Cost of Splaying
$=\mathrm{d}+\Delta$
$\leq \mathrm{d}+(3(\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{x}))-\mathrm{d}+2) \quad\{$ Prop. 13.7\}
$=3(\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{x}))+2$
$<3 \mathrm{r}(\mathrm{t})+2$
$=3 \lg (2 \mathrm{n}+1)+2 \quad\{$ Recall t is the root $\}$
$=\mathrm{O}(\lg \mathrm{n})$

Finishing Up

■ Until now, we've just focused on splaying costs.

- We also need to ensure that BST operations can be charged in a way that maintains the Credit Invariant. Three Cases:
- Search: Not a problem - doesn't change the tree.
- Delete: Not a problem - removing a node can only decrease ranks, so existing credits are still fine.
- Insert: As shown next, an Insert can cause $\mathrm{r}(\mathrm{T})$ to increase by up to $\lg (2 n+3)+\lg 3$. Thus, the Credit Invariant can be maintained if Insert is assessed an O(lg n) charge.

Insert

Insert

For $\mathrm{i}=1, \ldots, \mathrm{~d}$, let $\mathrm{n}\left(\mathrm{v}_{\mathrm{i}}\right)$ and $\mathrm{n}^{\prime}\left(\mathrm{v}_{\mathrm{i}}\right)$ be sizes before and after insertion, and $\quad r\left(v_{i}\right)$ and $r^{\prime}\left(v_{i}\right)$ be ranks before and after insertion.

We have: $\mathrm{n}^{\prime}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}\left(\mathrm{v}_{\mathrm{i}}\right)+2 . \quad$| Leaf gets replaced by "real" |
| :--- |
| node and two leaves. |

For $\mathrm{i}=1, \ldots, \mathrm{~d}-1, \mathrm{n}\left(\mathrm{v}_{\mathrm{i}}\right)+2 \leq \mathrm{n}\left(\mathrm{v}_{\mathrm{i}+1}\right)$, and $r^{\prime}\left(\mathrm{v}_{\mathrm{i}}\right)=\lg \left(\mathrm{n}^{\prime}\left(\mathrm{v}_{\mathrm{i}}\right)\right)=\lg \left(\mathrm{n}\left(\mathrm{v}_{\mathrm{i}}\right)+2\right) \leq \lg \left(\mathrm{n}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right)=\mathrm{r}\left(\mathrm{v}_{\mathrm{i}+1}\right)$.

Subtree at v_{i} doesn't include $\mathrm{v}_{\mathrm{i}+1}$ and its "other" child.

Thus, $\sum_{i=1 . . \mathrm{d}}\left(\mathrm{r}^{\prime}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{r}\left(\mathrm{v}_{\mathrm{i}}\right)\right) \leq \mathrm{r}^{\prime}\left(\mathrm{v}_{\mathrm{d}}\right)-\mathrm{r}\left(\mathrm{v}_{\mathrm{d}}\right)+\sum_{\mathrm{i}=1 . . \mathrm{d}-1}\left(\mathrm{r}\left(\mathrm{v}_{\mathrm{i}+1}\right)-\mathrm{r}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$

Note: v_{0} is excluded here - it doesn't have an

$$
=r^{\prime}\left(v_{d}\right)-r\left(v_{d}\right)+r\left(v_{d}\right)-r\left(v_{1}\right)
$$

$$
\leq \lg (2 n+3)
$$ old rank! It's new rank is $\lg 3$.

Thus, the Credit Invariant can be maintained if Insert is assessed a charge of at most $\lg (2 n+3)+\lg 3$.

For the insert operation, we perform a normal BST insert followed by a splay operation on the node inserted. Assume node x is inserted at depth k. Denote the parent of x as y_{1}, y_{1} 's parent as y_{2}, and so on (the root of the tree is y_{k}). Then the change in potential due to the insertion of x is (r is rank before the insertion and r^{\prime} is rank after the insertion, s is weight sum before the insertion):

$$
\begin{aligned}
\Delta \phi & =\sum_{j=1}^{k}\left(r^{\prime}\left(y_{j}\right)-r\left(y_{j}\right)\right) \\
& =\sum_{j=1}^{k}\left(\log \left(s\left(y_{j}\right)+1\right)-\log \left(s\left(y_{j}\right)\right)\right. \\
& =\sum_{j=1}^{k} \log \left(\frac{s\left(y_{j}\right)+1}{s\left(y_{j}\right)}\right) \\
& =\log \left(\prod_{j=1}^{k} \frac{s\left(y_{j}\right)+1}{s\left(y_{j}\right)}\right)\left(\text { note that } s\left(y_{j}\right)+1 \leq s\left(y_{j+1}\right)\right) \\
& \leq \log \left(\frac{s\left(y_{2}\right)}{s\left(y_{1}\right)} \cdot \frac{s\left(y_{3}\right)}{s\left(y_{2}\right)} \cdots \frac{s\left(y_{k}\right)}{s\left(y_{k-1}\right)} \cdot \frac{s\left(y_{k}\right)+1}{s\left(y_{k}\right)}\right) \\
& =\log \left(\frac{s\left(y_{k}\right)+1}{s\left(y_{k}\right)}\right) \\
& \leq \log n
\end{aligned}
$$

2012.12.21 not The End.

