
Splay Trees -

1

Splay Trees

In balanced tree schemes, explicit rules are
followed to ensure balance.
In splay trees, there are no such rules.
Search, insert, and delete operations are like in

binary search trees, except at the end of each
operation a special step called splaying is done.
Splaying ensures that all operations take O(lg

n)

amortized

time.
First, a quick review of BST operations…

Splay Trees -

2

BST: Search
44

8817

65 9732

28 54 82

7629

80
Note:
Sentinel leaf nodes are
assumed.
 tree with n keys
has 2n+1 nodes.

Search(25) Search(76)

Splay Trees -

3

BST: Insert
44

8817

65 9732

28 54 82

7629

80

Insert(78)

78

Splay Trees -

4

BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(32)

Has only one
child: just splice
out 32.

Splay Trees -

5

BST: Delete
44

8817

65 9728

54 82

76

29

80

78

Delete(32)

Splay Trees -

6

BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(65)

Has two children:
Replace 65 by successor,
76, and splice out
successor.

Note: Successor can have
at most one child. (Why?)

Splay Trees -

7

BST: Delete
44

8817

76 9732

28 54 82

29 80

78

Delete(65)

Splay Trees -

8

Splaying

In splay trees, after performing an ordinary BST
Search, Insert, or Delete, a splay operation is
performed on some node x (as described later).
The splay operation moves x to the root of the

tree.
The splay operation consists of sub-operations

called zig-zig, zig-zag, and zig.

Splay Trees -

9

Zig-Zig

10

20

30

T3 T4

T2

T1

z

y

x

30

20

10

T1 T2

T3

T4

x

y

z

(Symmetric case too)

Note: x’s

depth decreases by two.

x has a grandparent

Splay Trees -

10

Zig-Zag

10

30

20

T3

T4

T2

T1

z

y

x

20

10

T1 T2 T3 T4

x

z

(Symmetric case too)

Note: x’s

depth decreases by two.

30
y

x has a grandparent

Splay Trees -

11

Zig

20

10

T1 T2 T3 T4

x

y

(Symmetric case too)

Note: x’s

depth decreases by one.

30
w

10

20

30

T3 T4

T2

T1

y

x

w

x has no

grandparent (so, y is the root)
Note: w could be NIL

Splay Trees -

12

Complete Example
44

8817

65 9732

28 54 82

7629

80

78

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

13

Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

zig-zag

x

yz

Splay Trees -

14

Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

15

Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

zig-zag
z y

x

Splay Trees -

16

Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

17

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

zig-zag

z y

x

Splay Trees -

18

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

y
x

w

zig

Splay Trees -

19

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78 x
y

w

zig

Result of splaying

The result is a binary tree, with the left subtree
 having all keys less than the root, and the right

subtree

having keys greater than the root.
Also, the final tree is “more balanced”

than the

original.
However, if an operation near the root is done,

the tree can become less balanced.

Splay Trees -

20

Splay Trees -

21

When to Splay
Search:


Successful:

Splay node where key was found.



Unsuccessful:

Splay last-visited internal node (i.e.,
last node with a key).

Insert:


Splay newly added node.

Delete:


Splay parent of removed node (which is either the
node with the deleted key or its successor).

Note: All operations run in O(h) time, for a tree
of height h.

Splay Trees -

22

Amortized Analysis Review

Accounting Method


Idea: When an operation’s amortized cost exceeds it
actual cost, the difference is assigned to certain tree
nodes as credit.


Credit is used to pay for subsequent operations
whose amortized cost is less than their actual cost.

Most of our analysis will focus on splaying.


The BST operations will be easily dealt with at the
end.

Splay Trees -

23

Review: Accounting Method

Stack Example:


Operations:
•

Push(S, x).

•

Pop(S).
•

Multipop(S, k): if stack has s items, pop off min(s, k)
items.

s ≥ k
items

s 

k
items

Multipop(S, k)

Multipop(S, k)

s –

k
items

0 items

Can implement in O(1) time.

Splay Trees -

24

Accounting Method (Continued)

We charge

each operation an amortized cost.
Charge may be more

or less

than actual cost.

If more, then we have credit.
This credit can be used to pay for future

operations whose amortized cost is less than
their actual cost.
Require: For any sequence of operations,

amortized cost upper bounds worst-case cost.


That is, we always have nonnegative credit.

Splay Trees -

25

Accounting Method (Continued)

Stack Example:

Actual Costs:
Push:

1

Pop:

1
Multipop:

min(s, k)

Amortized Costs:
Push:

2

Pop:

0
Multipop:

0

Pays for the push and a future pop.

All O(1).

For a sequence of n
operations, does total
amortized cost upper
bound total worst-case
cost, as required?

What is the total worst-
case cost of the sequence?

Review: Potential method
IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.
Framework:
•

Start with an initial data structure D0.

•

Operation i

transforms Di–1

to Di.
•

The cost of operation i

is ci.

•

Define a potential function 

: {Di}  R,
such that (D0) = 0

and (Di

) 

0

for all i.

•

The amortized cost ĉi

with respect to 

is
defined to be ĉi

= ci

+ (Di) –

(Di–1).

Potential method II
•

Like the accounting method, but think of
the credit as potential stored with the entire
data structure.

•

Accounting method stores credit with
specific objects while potential method
stores potential in the data structure as a
whole.

•

Can release potential to pay for future
operations

•

Most flexible of the amortized analysis
methods.

Understanding potentials
ĉi

= ci

+ (Di) –

(Di–1)

potential difference i

•

If i

> 0, then ĉi

> ci. Operation i

stores
work in the data structure for later use.

•

If i

< 0, then ĉi

< ci. The data structure
delivers up stored work to help pay for
operation i.

Amortized costs bound the true
costs

The total amortized cost of n

operations is

 






n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.

The total amortized cost of n

operations is

 

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i
















The series telescopes.

Amortized costs bound the true costs

The total amortized cost of n

operations is

 






















n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since (Dn) 
0

and

(D0) = 0.

Amortized costs bound the true costs

Stack Example: Potential
Define: (Di) = #items in stack Thus, (D0)=0.

Plug in for operations:
Push: ĉi = ci + (Di) - (Di-1)

= 1 + j - (j-1)
= 2

Pop: ĉi = ci + (Di) - (Di-1)
= 1 + (j-1) - j
= 0

Multi-pop: ĉi = ci + (Di) - (Di-1)
= k’ + (j-k’) - j k’=min(|S|,k)
= 0

Thus O(1) amortized
time per op.

Splay Trees -

33

Ranks

T is a splay tree with n keys.
Definition: The size of node v in T, denoted

n(v), is the number of nodes in the subtree
 rooted at v. (In Sleator

& Tarjan

Paper, there is a weight w(i) attached to

each node

.)


Note: The root is of size 2n+1.

Definition: The rank of v, denoted r(v), is
lg(n(v)).


Note: The root has rank lg(2n+1).

Definition: r(T)

= vT

r(v).

Meaning of Ranks
 The rank of a tree is a measure of how well balanced it

is.
 A well balanced tree has a low rank.
 A badly balanced tree has a high rank.
 The splaying operations tend to make the rank smaller,

which balances the tree and makes other operations
faster.

 Some operations near the root may make the rank
larger and slightly unbalance the tree.

 Amortized analysis is used on splay trees, with the rank
of the tree

being the potential .(Φ(T) = r(T))

Splay Trees -

34

Splay Trees -

35

Credit Invariant
We will define amortized costs so that the

following invariant is maintained.



So, each operation’s amortized cost = its real cost + the
total change in r(T) it causes (positive or negative).

Let Ri

= op. i’s

real cost and i

= change in r(T) it
causes. Total am. cost = i=1,…,n

(Ri

+ i

). Initial
tree has rank 0 & final tree has non-neg. rank. So,
i=1,…n

i



0, which implies total am. cost 

total
real cost.

Each node v of T has r(v) credits in its account.Each node v of T has r(v) credits in its account.

Splay Trees -

36

What’s Left?
We want to show that the per-operation amortized

cost is logarithmic.
To do this, we need to look at how BST operations

and splay operations affect r(T).


We spend most of our time on splaying, and consider the
specific BST operations later.

To analyze splaying, we first look at how r(T)
changes as a result of a single substep, i.e., zig, zig-

 zig, or zig-zag.


Notation: Ranks before and after a substep

are denoted

r(v)

and r(v), respectively.

Splay Trees -

37

Proposition 13.6

Proposition 13.6: Let 

be the change in r(T) caused by a single
substep. Let x be the “x”

in our descriptions of these substeps. Then,

•

  3(r(x) 

r(x)) 

2 if the substep

is a zig-zig

or a zig-zag;
•

  3(r(x) 

r(x)) if the substep

is a zig.

Proposition 13.6: Let 

be the change in r(T) caused by a single
substep. Let x be the “x”

in our descriptions of these substeps. Then,

•   3(r(x) 

r(x)) 

2 if the substep

is a zig-zig

or a zig-zag;
•   3(r(x) 

r(x)) if the substep

is a zig.

Proof:

Three cases, one for each kind of substep…

Splay Trees -

38

Case 1: zig-zig
10

20

30

T3 T4

T2

T1

z
y

x

30

20

10

T1 T2

T3

T4

x

y

z
Only the ranks of x, y, and
z change. Also, r(x) = r(z),
r(y) 

r(x), and r(y) 

r(x).

Thus,



= r(x) + r(y) + r(z) –

r(x) –

r(y) –

r(z)
= r(y) + r(z) –

r(x) –

r(y)



r(x) + r(z) –

2r(x). (*)

Also, n(x) + n(z) 

n(x), which (by property of lg), implies
r(x) + r(z) 

2r(x) –

2, i.e.,

r(z) 

2r(x) –

r(x) –

2. (**)

By (*) and (**),   r(x) + (2r(x) –

r(x) –

2) –

2r(x)
= 3(r(x) –

r(x)) –

2.

If a > 0, b > 0, and c 

a + b,
then lg

a + lg

b 

2 lg

c –

2.

Splay Trees -

39

Case 2: zig-zag

Only the ranks of x, y, and
z change. Also, r(x) = r(z)
and r(x) 

r(y). Thus,



= r(x) + r(y) + r(z) –

r(x) –

r(y) –

r(z)
= r(y) + r(z) –

r(x) –

r(y)



r(y) + r(z) –

2r(x). (*)

Also, n(y) + n(z) 

n(x), which (by property of lg), implies

r(y) + r(z) 

2r(x) –

2. (**)

By (*) and (**),   2r(x) –

2 –

2r(x)


3(r(x) –

r(x)) –

2.

10

30

20

T3

T4

T2

T1

z
y

x

20

10

T1 T2 T3 T4

x

z 30y

Splay Trees -

40

Case 3: zig

Only the ranks of x and y change.
Also, r(y) 

r(y) and r(x) 

r(x). Thus,



= r(x) + r(y) –

r(x) –

r(y)


r(x) –

r(x)



3(r(x) –

r(x)).

20

10

T1 T2 T3 T4

x

y 30w

10

20

30

T3 T4

T2

T1

y
x

w

Splay Trees -

41

Proposition 13.7
Proposition 13.7: Let T be a splay tree with root t, and let 

be the

total variation of r(T) caused by splaying a node x at depth d. Then,
  3(r(t) 

r(x)) 

d + 2.

Proposition 13.7: Let T be a splay tree with root t, and let 

be the
total variation of r(T) caused by splaying a node x at depth d. Then,

  3(r(t) 

r(x)) 

d + 2.

Proof:

Splay(x)

consists of p

= d/2

substeps, each of which is a zig-zig

or
zig-zag, except possibly the last one, which is a zig

if d is odd.

Let r0

(x)

= x’s

initial rank, ri

(x)

= x’s

rank after the ith

substep, and

i

= the variation of r(T) caused by the ith

substep, where 1 

i 

p.

By Proposition 13.6,  

2dr(x))3(r(t)

22p(x))r(x)3(r

22(x))r(x)3(rδΔ

0p

p

1i
1ii

p

1i
i





 





Meaning of Proposition

If d is small (less than 3(r(t) 

r(x)) + 2) then the
splay operation can increase r(t) and thus make
the tree less balanced.
If d is larger than this, then the splay operation

decreases r(t) and thus makes the tree better
balanced.
Note that r(t) 

lg(2n + 1)

Splay Trees -

42

Splay Trees -

43

Amortized Costs
As stated before, each operation’s amortized

cost = its real cost + the total change in r(T) it
causes, i.e., .


This ensures the Credit Invariant

isn’t violated.

Real cost is d, so amortized cost is d + .
The real cost of d even includes the cost of

binary tree operations such as searching.
Note: 

can be positive or negative (or zero).



If it’s positive, we’re overcharging.


If it’s negative, we’re undercharging.

Splay Trees -

44

Another Look at 



= the total change in r(T).

Consider this example:




















Tv

TvTv

n(v)lg

lg(n(v))r(v)r(T)

a
b

c
d

4

3
2

1

n(a)

r(T) = lg(4 

3 

2 

1)
= lg(24)

b

c
d

4

2
1

a 1

r(T) = lg(4 

2 

1 

1)
= lg(8)

splay(b)

splay(a)



< 0



> 0

Unbalancing the Tree

In fact, a sequence of zig

operations can result
in a completely unbalanced linear tree. Then a
search operation can take O(n) time, but this is
OK because at least n operations have been
performed up to this point.

Splay Trees -

45

Splay Trees -

46

A Bound on Amortized Cost

We have:

Amortized Cost of Splaying
= d + 


d + (3(r(t) –

r(x)) –

d + 2) {Prop. 13.7}

= 3(r(t) –

r(x)) + 2
< 3r(t) + 2
= 3lg(2n + 1) + 2 {Recall t is the root}
= O(lg

n)

Splay Trees -

47

Finishing Up
Until now, we’ve just focused on splaying costs.
We also need to ensure that BST operations

can be

charged in a way that maintains the Credit Invariant.
Three Cases:


Search: Not a problem —

doesn’t change the tree.



Delete: Not a problem —

removing a node can only
decrease ranks, so existing credits are still fine.


Insert: As shown next, an Insert can cause r(T) to
increase by up to lg(2n+3) + lg

3. Thus, the Credit

Invariant can be maintained if Insert is assessed an O(lg
 n) charge.

Splay Trees -

48

Insert
44

88

65

82

76

80

Insert(78)

78

44

88

65

82

76

80

Insert(k)

k

v = v0

v1

v2

vd

Splay Trees -

49

Insert
For i = 1, …, d, let n(vi

)

and n'(vi

)

be sizes

before and after insertion,
and r(vi

)

and r'(vi

)

be ranks

before and after insertion.

We have: n'(vi

)

= n(vi

)

+ 2.

For i = 1, …, d –

1, n(vi

) + 2 

n(vi+1

), and
r'(vi

) = lg(n'(vi

)) = lg(n(vi

) + 2) 

lg(n(vi+1

)) = r(vi+1

).

Thus, i=1..d

(r'(vi

) –

r(vi

)) 

r'(vd

) –

r(vd

) + i=1..d-1

(r(vi+1

) –

r(vi

))
= r'(vd

) –

r(vd

)

+ r(vd

)

–

r(v1

)


lg(2n + 3).

Thus, the Credit Invariant can be maintained if Insert is assessed
a charge of at most lg(2n + 3) + lg

3.

Lots of typos in book!

Note: v0

is excluded
here –

it doesn’t have an

old rank! It’s new rank is lg

3.

Leaf gets replaced by “real”
node and two leaves.

Subtree

at vi
doesn’t include
vi+1

and its
“other”

child.

2012.12.21 not The End.

	Splay Trees
	BST: Search
	BST: Insert
	BST: Delete
	BST: Delete
	BST: Delete
	BST: Delete
	Splaying
	Zig-Zig
	Zig-Zag
	Zig
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Result of splaying	
	When to Splay
	Amortized Analysis Review
	Review: Accounting Method
	Accounting Method (Continued)
	Accounting Method (Continued)
	Review: Potential method
	Potential method II
	Understanding potentials
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Stack Example: Potential
	Ranks
	Meaning of Ranks
	Credit Invariant
	What’s Left?
	Proposition 13.6
	Case 1: zig-zig
	Case 2: zig-zag
	Case 3: zig
	Proposition 13.7
	Meaning of Proposition
	Amortized Costs
	Another Look at 
	Unbalancing the Tree
	A Bound on Amortized Cost
	Finishing Up
	Insert
	Insert
	幻灯片编号 50
	2012.12.21 not The End.

