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Splay Trees

In balanced tree schemes, explicit rules are 
followed to ensure balance.
In splay trees, there are no such rules.
Search, insert, and delete operations are like in 

binary search trees, except at the end of each 
operation a special step called splaying is done.
Splaying ensures that all operations take O(lg

 
n) 

amortized
 

time.
First, a quick review of BST operations…
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BST: Search
44

8817

65 9732

28 54 82

7629

80
Note:
Sentinel leaf nodes are
assumed.
 tree with n keys
has 2n+1 nodes.

Search(25) Search(76)
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BST: Insert
44

8817

65 9732

28 54 82

7629

80

Insert(78)

78
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BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(32)

Has only one
child: just splice
out 32.
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BST: Delete
44

8817

65 9728

54 82

76

29

80

78

Delete(32)



Splay Trees -

 

6

BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(65)

Has two children:
Replace 65 by successor,
76, and splice out
successor.

Note: Successor can have
at most one child.  (Why?)
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BST: Delete
44

8817

76 9732

28 54 82

29 80

78

Delete(65)
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Splaying

In splay trees, after performing an ordinary BST 
Search, Insert, or Delete, a splay operation is 
performed on some node x (as described later).
The splay operation moves x to the root of the 

tree.
The splay operation consists of sub-operations 

called zig-zig, zig-zag, and zig.
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Zig-Zig

10

20

30

T3 T4

T2

T1

z

y

x

30

20

10

T1 T2

T3

T4

x

y

z

(Symmetric case too)

Note: x’s
 

depth decreases by two.

x has a grandparent
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Zig-Zag

10

30

20

T3

T4

T2

T1

z

y

x

20

10

T1 T2 T3 T4

x

z

(Symmetric case too)

Note: x’s
 

depth decreases by two.

30
y

x has a grandparent
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Zig

20

10

T1 T2 T3 T4

x

y

(Symmetric case too)

Note: x’s
 

depth decreases by one.

30
w

10

20

30

T3 T4

T2

T1

y

x

w

x has no
 

grandparent (so, y is the root)
Note: w could be NIL
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Complete Example
44

8817

65 9732

28 54 82

7629

80

78

Splay(78) 50

x

y

z

zig-zag
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Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

zig-zag

x

yz
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Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

x

y

z

zig-zag
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Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

zig-zag
z y

x
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Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

x

y

z

zig-zag
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

zig-zag

z y

x
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

y
x

w

zig
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78 x
y

w

zig



Result of splaying

The result is a binary tree, with the left subtree
 having all keys less than the root, and the right 

subtree
 

having keys greater than the root.
Also, the final tree is “more balanced”

 
than the 

original.
However, if an operation near the root is done, 

the tree can become less balanced.
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When to Splay
Search:


 
Successful:

 
Splay node where key was found.


 

Unsuccessful:
 

Splay last-visited internal node (i.e., 
last node with a key).

Insert:


 
Splay newly added node.

Delete:


 
Splay parent of removed node (which is either the 
node with the deleted key or its successor). 

Note: All operations run in O(h) time, for a tree 
of height h.
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Amortized Analysis Review

Accounting Method


 
Idea: When an operation’s amortized cost exceeds it 
actual cost, the difference is assigned to certain tree 
nodes as credit.


 
Credit is used to pay for subsequent operations 
whose amortized cost is less than their actual cost.

Most of our analysis will focus on splaying.


 
The BST operations will be easily dealt with at the 
end.
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Review: Accounting Method

Stack Example:


 
Operations:
•

 
Push(S, x).

•
 

Pop(S).
•

 
Multipop(S, k): if stack has s items, pop off min(s, k) 
items.

s ≥ k
items

s 
 

k
items

Multipop(S, k)

Multipop(S, k)

s –
 

k
items

0 items

Can implement in O(1) time.
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Accounting Method (Continued)

We charge
 

each operation an amortized cost.
Charge may be more

 
or less

 
than actual cost.

If more, then we have credit.
This credit can be used to pay for future 

operations whose amortized cost is less than 
their actual cost.
Require: For any sequence of operations, 

amortized cost upper bounds worst-case cost.


 
That is, we always have nonnegative credit.
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Accounting Method (Continued)

Stack Example:

Actual Costs:
Push:

 
1

Pop:
 

1
Multipop:

 
min(s, k)

Amortized Costs:
Push:

 
2

Pop:
 

0
Multipop:

 
0

Pays for the push and a future pop.

All O(1).

For a sequence of n
operations, does total
amortized cost upper
bound total worst-case
cost, as required?

What is the total worst-
case cost of the sequence?



Review: Potential method
IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set.
Framework:
•

 
Start with an initial data structure D0.

•
 

Operation i
 

transforms Di–1
 

to Di.  
•

 
The cost of operation i

 
is ci.

•
 

Define a potential function 
 

: {Di}  R,
such that (D0 ) = 0

 
and (Di

 
) 

 
0

 
for all i. 

•
 

The amortized cost ĉi
 

with respect to 
 

is 
defined to be ĉi

 
= ci

 
+ (Di) –  

(Di–1). 



Potential method II
•

 
Like the accounting method, but think of 
the credit as potential stored with the entire 
data structure. 

•
 

Accounting method stores credit with 
specific objects while potential method 
stores potential in the data structure as a 
whole.

•
 

Can release potential to pay for future 
operations

•
 

Most flexible of the amortized analysis 
methods. 



Understanding potentials
ĉi

 
= ci

 
+ (Di) –  

(Di–1)

potential difference i

•
 

If  i
 

> 0, then ĉi
 

> ci.  Operation i
 

stores 
work in the data structure for later use.

•
 

If  i
 

< 0, then ĉi
 

< ci.  The data structure 
delivers up stored work to help pay for 
operation i.



Amortized costs bound the true 
costs

The total amortized cost of n
 

operations is

 






n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.



The total amortized cost of n
 

operations is
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The series telescopes.

Amortized costs bound the true costs



The total amortized cost of n
 

operations is
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since (Dn)   
0

 
and

(D0 ) = 0.

Amortized costs bound the true costs



Stack Example: Potential
Define: (Di ) = #items in stack Thus, (D0 )=0.

Plug in for operations:
Push: ĉi = ci + (Di ) - (Di-1 )

= 1 +    j    - (j-1)
= 2

Pop: ĉi = ci + (Di ) - (Di-1 )
= 1 +  (j-1) - j
= 0

Multi-pop: ĉi = ci + (Di ) - (Di-1 )
= k’ + (j-k’) - j k’=min(|S|,k)
= 0

Thus O(1) amortized 
time per op.
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Ranks

T is a splay tree with n keys.
Definition: The size of node v in T, denoted 

n(v), is the number of nodes in the subtree
 rooted at v. (In Sleator

 
& Tarjan

 
Paper, there is a weight w(i) attached to 

each node
 

. )


 
Note: The root is of size 2n+1.

Definition: The rank of v, denoted r(v), is 
lg(n(v)).


 
Note: The root has rank lg(2n+1).

Definition: r(T)
 

= vT
 

r(v).



Meaning of Ranks
 The rank of a tree is a measure of how well balanced it 

is.
 A well balanced tree has a low rank.
 A badly balanced tree has a high rank.
 The splaying operations tend to make the rank smaller, 

which balances the tree and makes other operations 
faster.  

 Some operations near the root may make the rank 
larger and slightly unbalance the tree.

 Amortized analysis is used on splay trees, with the rank 
of the tree

 
being the potential .(Φ(T) = r(T))
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Credit Invariant
We will define amortized costs so that the 

following invariant is maintained.


 

So, each operation’s amortized cost = its real cost + the 
total change in r(T) it causes (positive or negative).

Let Ri
 

= op. i’s
 

real cost and i
 

= change in r(T) it 
causes. Total am. cost = i=1,…,n

 

(Ri
 

+ i
 

).  Initial 
tree has rank 0 & final tree has non-neg. rank.  So, 
i=1,…n

 

i
 


 

0, which implies total am. cost 
 

total 
real cost.

Each node v of T has r(v) credits in its account.Each node v of T has r(v) credits in its account.
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What’s Left?
We want to show that the per-operation amortized 

cost is logarithmic.
To do this, we need to look at how BST operations 

and splay operations affect r(T).


 
We spend most of our time on splaying, and consider the 
specific BST operations later.

To analyze splaying, we first look at how r(T) 
changes as a result of a single substep, i.e., zig, zig-

 zig, or zig-zag. 


 
Notation: Ranks before and after a substep

 
are denoted 

r(v)
 

and r(v), respectively.
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Proposition 13.6

Proposition 13.6: Let 
 

be the change in r(T) caused by a single
substep.  Let x be the “x”

 
in our descriptions of these substeps.  Then,

•
 

  3(r(x) 
 

r(x)) 
 

2 if the substep
 

is a zig-zig
 

or a zig-zag;
•

 
  3(r(x) 

 
r(x)) if the substep

 
is a zig.

Proposition 13.6: Let 
 

be the change in r(T) caused by a single
substep.  Let x be the “x”

 
in our descriptions of these substeps.  Then,

•   3(r(x) 
 

r(x)) 
 

2 if the substep
 

is a zig-zig
 

or a zig-zag;
•   3(r(x) 

 
r(x)) if the substep

 
is a zig.

Proof:

Three cases, one for each kind of substep…
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Case 1: zig-zig
10

20

30

T3 T4

T2

T1

z
y

x

30

20

10

T1 T2

T3

T4

x

y

z
Only the ranks of x, y, and
z change.  Also, r(x) = r(z),
r(y) 

 
r(x), and r(y) 

 
r(x).

Thus,


 

= r(x) + r(y) + r(z) –
 

r(x) –
 

r(y) –
 

r(z)
= r(y) + r(z) –

 
r(x) –

 
r(y)


 

r(x) + r(z) –
 

2r(x).   (*)

Also, n(x) + n(z) 
 

n(x), which (by property of lg), implies
r(x) + r(z) 

 
2r(x) –

 
2, i.e.,

r(z) 
 

2r(x) –
 

r(x) –
 

2.   (**)

By (*) and (**),   r(x) + (2r(x) –
 

r(x) –
 

2) –
 

2r(x)
= 3(r(x) –

 
r(x)) –

 
2.

If a > 0, b > 0, and c 
 

a + b,
then lg

 
a + lg

 
b 

 
2 lg

 
c –

 
2.
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Case 2: zig-zag

Only the ranks of x, y, and
z change.  Also, r(x) = r(z)
and r(x) 

 
r(y).  Thus,


 

= r(x) + r(y) + r(z) –
 

r(x) –
 

r(y) –
 

r(z)
= r(y) + r(z) –

 
r(x) –

 
r(y)


 

r(y) + r(z) –
 

2r(x).   (*)

Also, n(y) + n(z) 
 

n(x), which (by property of lg), implies

r(y) + r(z) 
 

2r(x) –
 

2.   (**)

By (*) and (**),   2r(x) –
 

2 –
 

2r(x)


 
3(r(x) –

 
r(x)) –

 
2.

10

30

20

T3

T4

T2

T1

z
y

x

20

10

T1 T2 T3 T4

x

z 30y
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Case 3: zig

Only the ranks of x and y change.  
Also, r(y) 

 
r(y) and r(x) 

 
r(x).  Thus,


 

= r(x) + r(y) –
 

r(x) –
 

r(y)


 
r(x) –

 
r(x)


 

3(r(x) –
 

r(x)).

20

10

T1 T2 T3 T4

x

y 30w

10

20

30

T3 T4

T2

T1

y
x

w
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Proposition 13.7
Proposition 13.7: Let T be a splay tree with root t, and let 

 
be the

total variation of r(T) caused by splaying a node x at depth d.  Then,
  3(r(t) 

 
r(x)) 

 
d + 2.

Proposition 13.7: Let T be a splay tree with root t, and let 
 

be the
total variation of r(T) caused by splaying a node x at depth d.  Then,

  3(r(t) 
 

r(x)) 
 

d + 2.

Proof:

Splay(x)
 

consists of p
 

= d/2
 

substeps, each of which is a zig-zig
 

or
zig-zag, except possibly the last one, which is a zig

 
if d is odd.

Let r0

 

(x)
 

= x’s
 

initial rank, ri

 

(x)
 

= x’s
 

rank after the ith

 
substep, and

i

 

= the variation of r(T) caused by the ith
 

substep, where 1 
 

i 
 

p.

By Proposition 13.6,  

2dr(x))3(r(t)               

22p(x))r(x)3(r                

22(x))r(x)3(rδΔ

0p

p

1i
1ii

p

1i
i





 







Meaning of Proposition

If d is small (less than 3(r(t) 
 

r(x)) + 2) then the 
splay operation can increase r(t) and thus make 
the tree less balanced.
If d is larger than this, then the splay operation 

decreases r(t) and thus makes the tree better 
balanced.
Note that r(t) 

 
lg(2n + 1) 
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Amortized Costs
As stated before, each operation’s amortized 

cost = its real cost + the total change in r(T) it 
causes, i.e., .


 
This ensures the Credit Invariant

 
isn’t violated.

Real cost is d, so amortized cost is d + .
The real cost of d even includes the cost of 

binary tree operations such as searching.
Note: 

 
can be positive or negative (or zero).


 

If it’s positive, we’re overcharging.


 
If it’s negative, we’re undercharging.
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Another Look at 


 

= the total change in r(T).

Consider this example:




















Tv

TvTv

n(v)lg                       

lg(n(v))r(v)r(T)

a
b

c
d

4

3
2

1

n(a)

r(T) = lg(4 
 

3 
 

2 
 

1)
= lg(24)

b

c
d

4

2
1

a 1

r(T) = lg(4 
 

2 
 

1 
 

1)
= lg(8)

splay(b)

splay(a)


 

< 0


 

> 0



Unbalancing the Tree

In fact, a sequence of zig
 

operations can result 
in a completely unbalanced linear tree.  Then a 
search operation can take O(n) time, but this is 
OK because at least n operations have been 
performed up to this point.
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A Bound on Amortized Cost

We have:

Amortized Cost of Splaying 
= d + 


 
d + (3(r(t) –

 
r(x)) –

 
d + 2)      {Prop. 13.7}

= 3(r(t) –
 

r(x)) + 2
< 3r(t) + 2
= 3lg(2n + 1) + 2                       {Recall t is the root}
= O(lg

 
n)
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Finishing Up
Until now, we’ve just focused on splaying costs.
We also need to ensure that BST operations

 
can be 

charged in a way that maintains the Credit Invariant.
Three Cases:


 
Search: Not a problem —

 
doesn’t change the tree.


 

Delete: Not a problem —
 

removing a node can only 
decrease ranks, so existing credits are still fine.


 
Insert: As shown next, an Insert can cause r(T) to 
increase by up to lg(2n+3) + lg

 
3.  Thus, the Credit 

Invariant can be maintained if Insert is assessed an O(lg
 n) charge.
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Insert
44

88

65

82

76

80

Insert(78)

78

44

88

65

82

76

80

Insert(k)

k

v = v0

v1

v2

vd
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Insert
For i = 1, …, d, let n(vi

 

)
 

and n'(vi

 

)
 

be sizes
 

before and after insertion,
and                         r(vi

 

)
 

and r'(vi

 

)
 

be ranks
 

before and after insertion.

We have:   n'(vi

 

)
 

= n(vi

 

)
 

+ 2.

For i = 1, …, d –
 

1,  n(vi

 

) + 2 
 

n(vi+1

 

),   and
r'(vi

 

) = lg(n'(vi

 

)) = lg(n(vi

 

) + 2) 
 

lg(n(vi+1

 

)) = r(vi+1

 

).

Thus, i=1..d

 

(r'(vi

 

) –
 

r(vi

 

)) 
 

r'(vd

 

) –
 

r(vd

 

) + i=1..d-1

 

(r(vi+1

 

) –
 

r(vi

 

))
= r'(vd

 

) –
 

r(vd

 

)
 

+ r(vd

 

)
 

–
 

r(v1

 

)


 
lg(2n + 3).

Thus, the Credit Invariant can be maintained if Insert is assessed
a charge of at most lg(2n + 3) + lg

 
3.

Lots of typos in book!

Note: v0

 

is excluded
here –

 
it doesn’t have an

old rank!  It’s new rank is lg
 

3.

Leaf gets replaced by “real”
node and two leaves.

Subtree
 

at vi
doesn’t include
vi+1

 

and its
“other”

 
child.





2012.12.21 not The End.
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