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Splay Trees

In balanced tree schemes, explicit rules are 
followed to ensure balance.
In splay trees, there are no such rules.
Search, insert, and delete operations are like in 

binary search trees, except at the end of each 
operation a special step called splaying is done.
Splaying ensures that all operations take O(lg

 
n) 

amortized
 

time.
First, a quick review of BST operations…
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BST: Search
44

8817

65 9732

28 54 82

7629

80
Note:
Sentinel leaf nodes are
assumed.
 tree with n keys
has 2n+1 nodes.

Search(25) Search(76)
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BST: Insert
44

8817

65 9732

28 54 82

7629

80

Insert(78)

78
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BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(32)

Has only one
child: just splice
out 32.



Splay Trees -

 

5

BST: Delete
44

8817

65 9728

54 82

76

29

80

78

Delete(32)
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BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(65)

Has two children:
Replace 65 by successor,
76, and splice out
successor.

Note: Successor can have
at most one child.  (Why?)
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BST: Delete
44

8817

76 9732

28 54 82

29 80

78

Delete(65)
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Splaying

In splay trees, after performing an ordinary BST 
Search, Insert, or Delete, a splay operation is 
performed on some node x (as described later).
The splay operation moves x to the root of the 

tree.
The splay operation consists of sub-operations 

called zig-zig, zig-zag, and zig.
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Zig-Zig

10

20

30

T3 T4

T2

T1

z

y

x

30

20

10

T1 T2

T3

T4

x

y

z

(Symmetric case too)

Note: x’s
 

depth decreases by two.

x has a grandparent
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Zig-Zag

10

30

20

T3

T4

T2

T1

z

y

x

20

10

T1 T2 T3 T4

x

z

(Symmetric case too)

Note: x’s
 

depth decreases by two.

30
y

x has a grandparent
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Zig

20

10

T1 T2 T3 T4

x

y

(Symmetric case too)

Note: x’s
 

depth decreases by one.

30
w

10

20

30

T3 T4

T2

T1

y

x

w

x has no
 

grandparent (so, y is the root)
Note: w could be NIL
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Complete Example
44

8817

65 9732

28 54 82

7629

80

78

Splay(78) 50

x

y

z

zig-zag
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Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

zig-zag

x

yz
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Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

x

y

z

zig-zag
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Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

zig-zag
z y

x
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Complete Example
44

8817

65

9732

28

54

82
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Splay(78) 50

x
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z

zig-zag
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

zig-zag

z y

x
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

y
x

w

zig
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Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78 x
y

w

zig



Result of splaying

The result is a binary tree, with the left subtree
 having all keys less than the root, and the right 

subtree
 

having keys greater than the root.
Also, the final tree is “more balanced”

 
than the 

original.
However, if an operation near the root is done, 

the tree can become less balanced.
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When to Splay
Search:


 
Successful:

 
Splay node where key was found.


 

Unsuccessful:
 

Splay last-visited internal node (i.e., 
last node with a key).

Insert:


 
Splay newly added node.

Delete:


 
Splay parent of removed node (which is either the 
node with the deleted key or its successor). 

Note: All operations run in O(h) time, for a tree 
of height h.
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Amortized Analysis Review

Accounting Method


 
Idea: When an operation’s amortized cost exceeds it 
actual cost, the difference is assigned to certain tree 
nodes as credit.


 
Credit is used to pay for subsequent operations 
whose amortized cost is less than their actual cost.

Most of our analysis will focus on splaying.


 
The BST operations will be easily dealt with at the 
end.
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Review: Accounting Method

Stack Example:


 
Operations:
•

 
Push(S, x).

•
 

Pop(S).
•

 
Multipop(S, k): if stack has s items, pop off min(s, k) 
items.

s ≥ k
items

s 
 

k
items

Multipop(S, k)

Multipop(S, k)

s –
 

k
items

0 items

Can implement in O(1) time.
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Accounting Method (Continued)

We charge
 

each operation an amortized cost.
Charge may be more

 
or less

 
than actual cost.

If more, then we have credit.
This credit can be used to pay for future 

operations whose amortized cost is less than 
their actual cost.
Require: For any sequence of operations, 

amortized cost upper bounds worst-case cost.


 
That is, we always have nonnegative credit.
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Accounting Method (Continued)

Stack Example:

Actual Costs:
Push:

 
1

Pop:
 

1
Multipop:

 
min(s, k)

Amortized Costs:
Push:

 
2

Pop:
 

0
Multipop:

 
0

Pays for the push and a future pop.

All O(1).

For a sequence of n
operations, does total
amortized cost upper
bound total worst-case
cost, as required?

What is the total worst-
case cost of the sequence?



Review: Potential method
IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set.
Framework:
•

 
Start with an initial data structure D0.

•
 

Operation i
 

transforms Di–1
 

to Di.  
•

 
The cost of operation i

 
is ci.

•
 

Define a potential function 
 

: {Di}  R,
such that (D0 ) = 0

 
and (Di

 
) 

 
0

 
for all i. 

•
 

The amortized cost ĉi
 

with respect to 
 

is 
defined to be ĉi

 
= ci

 
+ (Di) –  

(Di–1). 



Potential method II
•

 
Like the accounting method, but think of 
the credit as potential stored with the entire 
data structure. 

•
 

Accounting method stores credit with 
specific objects while potential method 
stores potential in the data structure as a 
whole.

•
 

Can release potential to pay for future 
operations

•
 

Most flexible of the amortized analysis 
methods. 



Understanding potentials
ĉi

 
= ci

 
+ (Di) –  

(Di–1)

potential difference i

•
 

If  i
 

> 0, then ĉi
 

> ci.  Operation i
 

stores 
work in the data structure for later use.

•
 

If  i
 

< 0, then ĉi
 

< ci.  The data structure 
delivers up stored work to help pay for 
operation i.



Amortized costs bound the true 
costs

The total amortized cost of n
 

operations is

 
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Summing both sides.



The total amortized cost of n
 

operations is
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The series telescopes.

Amortized costs bound the true costs



The total amortized cost of n
 

operations is
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since (Dn)   
0

 
and

(D0 ) = 0.

Amortized costs bound the true costs



Stack Example: Potential
Define: (Di ) = #items in stack Thus, (D0 )=0.

Plug in for operations:
Push: ĉi = ci + (Di ) - (Di-1 )

= 1 +    j    - (j-1)
= 2

Pop: ĉi = ci + (Di ) - (Di-1 )
= 1 +  (j-1) - j
= 0

Multi-pop: ĉi = ci + (Di ) - (Di-1 )
= k’ + (j-k’) - j k’=min(|S|,k)
= 0

Thus O(1) amortized 
time per op.
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Ranks

T is a splay tree with n keys.
Definition: The size of node v in T, denoted 

n(v), is the number of nodes in the subtree
 rooted at v. (In Sleator

 
& Tarjan

 
Paper, there is a weight w(i) attached to 

each node
 

. )


 
Note: The root is of size 2n+1.

Definition: The rank of v, denoted r(v), is 
lg(n(v)).


 
Note: The root has rank lg(2n+1).

Definition: r(T)
 

= vT
 

r(v).



Meaning of Ranks
 The rank of a tree is a measure of how well balanced it 

is.
 A well balanced tree has a low rank.
 A badly balanced tree has a high rank.
 The splaying operations tend to make the rank smaller, 

which balances the tree and makes other operations 
faster.  

 Some operations near the root may make the rank 
larger and slightly unbalance the tree.

 Amortized analysis is used on splay trees, with the rank 
of the tree

 
being the potential .(Φ(T) = r(T))
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Credit Invariant
We will define amortized costs so that the 

following invariant is maintained.


 

So, each operation’s amortized cost = its real cost + the 
total change in r(T) it causes (positive or negative).

Let Ri
 

= op. i’s
 

real cost and i
 

= change in r(T) it 
causes. Total am. cost = i=1,…,n

 

(Ri
 

+ i
 

).  Initial 
tree has rank 0 & final tree has non-neg. rank.  So, 
i=1,…n

 

i
 


 

0, which implies total am. cost 
 

total 
real cost.

Each node v of T has r(v) credits in its account.Each node v of T has r(v) credits in its account.
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What’s Left?
We want to show that the per-operation amortized 

cost is logarithmic.
To do this, we need to look at how BST operations 

and splay operations affect r(T).


 
We spend most of our time on splaying, and consider the 
specific BST operations later.

To analyze splaying, we first look at how r(T) 
changes as a result of a single substep, i.e., zig, zig-

 zig, or zig-zag. 


 
Notation: Ranks before and after a substep

 
are denoted 

r(v)
 

and r(v), respectively.
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Proposition 13.6

Proposition 13.6: Let 
 

be the change in r(T) caused by a single
substep.  Let x be the “x”

 
in our descriptions of these substeps.  Then,

•
 

  3(r(x) 
 

r(x)) 
 

2 if the substep
 

is a zig-zig
 

or a zig-zag;
•

 
  3(r(x) 

 
r(x)) if the substep

 
is a zig.

Proposition 13.6: Let 
 

be the change in r(T) caused by a single
substep.  Let x be the “x”

 
in our descriptions of these substeps.  Then,

•   3(r(x) 
 

r(x)) 
 

2 if the substep
 

is a zig-zig
 

or a zig-zag;
•   3(r(x) 

 
r(x)) if the substep

 
is a zig.

Proof:

Three cases, one for each kind of substep…
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Case 1: zig-zig
10

20

30

T3 T4

T2

T1

z
y

x

30

20

10

T1 T2

T3

T4

x

y

z
Only the ranks of x, y, and
z change.  Also, r(x) = r(z),
r(y) 

 
r(x), and r(y) 

 
r(x).

Thus,


 

= r(x) + r(y) + r(z) –
 

r(x) –
 

r(y) –
 

r(z)
= r(y) + r(z) –

 
r(x) –

 
r(y)


 

r(x) + r(z) –
 

2r(x).   (*)

Also, n(x) + n(z) 
 

n(x), which (by property of lg), implies
r(x) + r(z) 

 
2r(x) –

 
2, i.e.,

r(z) 
 

2r(x) –
 

r(x) –
 

2.   (**)

By (*) and (**),   r(x) + (2r(x) –
 

r(x) –
 

2) –
 

2r(x)
= 3(r(x) –

 
r(x)) –

 
2.

If a > 0, b > 0, and c 
 

a + b,
then lg

 
a + lg

 
b 

 
2 lg

 
c –

 
2.
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Case 2: zig-zag

Only the ranks of x, y, and
z change.  Also, r(x) = r(z)
and r(x) 

 
r(y).  Thus,


 

= r(x) + r(y) + r(z) –
 

r(x) –
 

r(y) –
 

r(z)
= r(y) + r(z) –

 
r(x) –

 
r(y)


 

r(y) + r(z) –
 

2r(x).   (*)

Also, n(y) + n(z) 
 

n(x), which (by property of lg), implies

r(y) + r(z) 
 

2r(x) –
 

2.   (**)

By (*) and (**),   2r(x) –
 

2 –
 

2r(x)


 
3(r(x) –

 
r(x)) –

 
2.

10

30

20

T3

T4

T2

T1

z
y

x

20

10

T1 T2 T3 T4

x

z 30y
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Case 3: zig

Only the ranks of x and y change.  
Also, r(y) 

 
r(y) and r(x) 

 
r(x).  Thus,


 

= r(x) + r(y) –
 

r(x) –
 

r(y)


 
r(x) –

 
r(x)


 

3(r(x) –
 

r(x)).

20

10

T1 T2 T3 T4

x

y 30w

10

20

30

T3 T4

T2

T1

y
x

w
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Proposition 13.7
Proposition 13.7: Let T be a splay tree with root t, and let 

 
be the

total variation of r(T) caused by splaying a node x at depth d.  Then,
  3(r(t) 

 
r(x)) 

 
d + 2.

Proposition 13.7: Let T be a splay tree with root t, and let 
 

be the
total variation of r(T) caused by splaying a node x at depth d.  Then,

  3(r(t) 
 

r(x)) 
 

d + 2.

Proof:

Splay(x)
 

consists of p
 

= d/2
 

substeps, each of which is a zig-zig
 

or
zig-zag, except possibly the last one, which is a zig

 
if d is odd.

Let r0

 

(x)
 

= x’s
 

initial rank, ri

 

(x)
 

= x’s
 

rank after the ith

 
substep, and

i

 

= the variation of r(T) caused by the ith
 

substep, where 1 
 

i 
 

p.

By Proposition 13.6,  

2dr(x))3(r(t)               

22p(x))r(x)3(r                

22(x))r(x)3(rδΔ

0p

p

1i
1ii

p

1i
i





 







Meaning of Proposition

If d is small (less than 3(r(t) 
 

r(x)) + 2) then the 
splay operation can increase r(t) and thus make 
the tree less balanced.
If d is larger than this, then the splay operation 

decreases r(t) and thus makes the tree better 
balanced.
Note that r(t) 

 
lg(2n + 1) 
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Amortized Costs
As stated before, each operation’s amortized 

cost = its real cost + the total change in r(T) it 
causes, i.e., .


 
This ensures the Credit Invariant

 
isn’t violated.

Real cost is d, so amortized cost is d + .
The real cost of d even includes the cost of 

binary tree operations such as searching.
Note: 

 
can be positive or negative (or zero).


 

If it’s positive, we’re overcharging.


 
If it’s negative, we’re undercharging.
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Another Look at 


 

= the total change in r(T).

Consider this example:




















Tv

TvTv

n(v)lg                       

lg(n(v))r(v)r(T)

a
b

c
d

4

3
2

1

n(a)

r(T) = lg(4 
 

3 
 

2 
 

1)
= lg(24)

b

c
d

4

2
1

a 1

r(T) = lg(4 
 

2 
 

1 
 

1)
= lg(8)

splay(b)

splay(a)


 

< 0


 

> 0



Unbalancing the Tree

In fact, a sequence of zig
 

operations can result 
in a completely unbalanced linear tree.  Then a 
search operation can take O(n) time, but this is 
OK because at least n operations have been 
performed up to this point.
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A Bound on Amortized Cost

We have:

Amortized Cost of Splaying 
= d + 


 
d + (3(r(t) –

 
r(x)) –

 
d + 2)      {Prop. 13.7}

= 3(r(t) –
 

r(x)) + 2
< 3r(t) + 2
= 3lg(2n + 1) + 2                       {Recall t is the root}
= O(lg

 
n)
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Finishing Up
Until now, we’ve just focused on splaying costs.
We also need to ensure that BST operations

 
can be 

charged in a way that maintains the Credit Invariant.
Three Cases:


 
Search: Not a problem —

 
doesn’t change the tree.


 

Delete: Not a problem —
 

removing a node can only 
decrease ranks, so existing credits are still fine.


 
Insert: As shown next, an Insert can cause r(T) to 
increase by up to lg(2n+3) + lg

 
3.  Thus, the Credit 

Invariant can be maintained if Insert is assessed an O(lg
 n) charge.
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Insert
44

88

65

82

76

80

Insert(78)

78

44

88

65

82

76

80

Insert(k)

k

v = v0

v1

v2

vd
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Insert
For i = 1, …, d, let n(vi

 

)
 

and n'(vi

 

)
 

be sizes
 

before and after insertion,
and                         r(vi

 

)
 

and r'(vi

 

)
 

be ranks
 

before and after insertion.

We have:   n'(vi

 

)
 

= n(vi

 

)
 

+ 2.

For i = 1, …, d –
 

1,  n(vi

 

) + 2 
 

n(vi+1

 

),   and
r'(vi

 

) = lg(n'(vi

 

)) = lg(n(vi

 

) + 2) 
 

lg(n(vi+1

 

)) = r(vi+1

 

).

Thus, i=1..d

 

(r'(vi

 

) –
 

r(vi

 

)) 
 

r'(vd

 

) –
 

r(vd

 

) + i=1..d-1

 

(r(vi+1

 

) –
 

r(vi

 

))
= r'(vd

 

) –
 

r(vd

 

)
 

+ r(vd

 

)
 

–
 

r(v1

 

)


 
lg(2n + 3).

Thus, the Credit Invariant can be maintained if Insert is assessed
a charge of at most lg(2n + 3) + lg

 
3.

Lots of typos in book!

Note: v0

 

is excluded
here –

 
it doesn’t have an

old rank!  It’s new rank is lg
 

3.

Leaf gets replaced by “real”
node and two leaves.

Subtree
 

at vi
doesn’t include
vi+1

 

and its
“other”

 
child.
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