Splay Trees

B In balanced tree schemes, explicit rules are
followed to ensure balance.

B In splay trees, there are no such rules.

B Scarch, 1nsert, and delete operations are like 1n
binary search trees, except at the end of each
operation a special step called splaying is done.

B Splaying ensures that all operations take O(lg n)
amortized time.

B First, a quick review of BST operations...

Splay Trees - 1

BST: Search

h(2
Search(5)\ /Search(76)

Note:
Sentinel leaf nodes are
assumed.

= tree with n keys
has 2n+1 nodes. Splay Trees - 2

BST: Insert

/Insert(78)

Splay Trees - 3

BST: Delete

Delete(32)

Has only one @
child: just splice @

2

Splay Trees - 4

BST: Delete

Delete(32)

Splay Trees - 5

BST: Delete

Delete(65)

Has two children:
Replace 65 by successor, @
76, and splice out
SUCCeSSOr.

Note: Successor can have / \

at most one child. (Why?)

Splay Trees - 6

BST: Delete

Delete(65)

Splay Trees - 7

Splaying

B In splay trees, after performing an ordinary BST
Search, Insert, or Delete, a splay operation is
performed on some node x (as described later).

B The splay operation moves x to the root of the
tree.

B The splay operation consists of sub-operations
called zig-zig, z1g-zag, and z1g.

Splay Trees - 8

/1g-719

X has a grandparent

(Symmetric case too)

Note: x’s depth decreases by two.

Splay Trees - 9

/1g-7.ag

X has a grandparent

(Symmetric case too)

Note: x’s depth decreases by two.

Splay Trees - 10

Z1g

X has no grandparent (so, y is the root)
Note: w could be NIL

(Symmetric case too)

Note: x’s depth decreases by one.

Splay Trees - 11

Complete Example

Splay(78)

zig-zag

Splay Trees - 12

Complete Example

Splay(78)

zig-zag

Splay Trees - 13

Complete Example

Splay(78)

zig-zag

Splay Trees - 14

Complete Example

Splay(78)

zig-zag

Splay Trees - 15

Complete Example

Splay(78)

zig-zag

Splay Trees - 16

Complete Example

Splay(78)

zig-zag

Splay Trees - 17

Complete Example

Splay(78)

Zig

Splay Trees - 18

Complete Example

Splay(78)

Zig

Splay Trees - 19

Result of splaying

B The result is a binary tree, with the left subtree
having all keys less than the root, and the right
subtree having keys greater than the root.

B Also, the final tree 1s “more balanced” than the
original.

B However, if an operation near the root 1s done,
the tree can become less balanced.

Splay Trees - 20

When to Splay

Bl Search:

¢ Successful: Splay node where key was found.

¢ Unsuccessful: Splay last-visited internal node (1.¢.,
last node with a key).

B | nsert:
* Splay newly added node.
B Delete:

¢ Splay parent of removed node (which 1s either the
node with the deleted key or 1ts successor).

B Note: All operations run in O(h) time, for a tree
of height h.

Splay Trees - 21

Amortized Analysis Review

B Accounting Method

¢ |dea: When an operation’s amortized cost exceeds it
actual cost, the difference 1s assigned to certain tree
nodes as credit.

¢ Credit 1s used to pay for subsequent operations
whose amortized cost is less than their actual cost.

B Most of our analysis will focus on splaying.

¢ The BST operations will be easily dealt with at the
end.

Splay Trees - 22

Review: Accounting Method

B Stack Example:

¢ Operations:

* Push(S, x). , . .
Can implement in O(1) time.
* Pop(S).
« Multipop(S, k): if stack has s items, pop off min(s, k)
items.
s =k Multipop(S, k)

l items - s—k

._ items

Multipop(S, k)

sk
items 0 items

Splay Trees - 23

Accounting Method (Continued)

B We charge each operation an amortized cost.
B Charge may be more or less than actual cost.
B [f more, then we have credit.

B This credit can be used to pay for future
operations whose amortized cost 1s less than
their actual cost.

B Require: For any sequence of operations,
amortized cost upper bounds worst-case cost.

¢ That 1s, we always have nonnegative credit.

Splay Trees - 24

Accounting Method (Continued)

Stack Example:

Actual Costs: For a sequence of n
Push: 1 operations, does total
Pop: 1 amortized cost upper
Multipop: min(s, k) bound total worst-case

_ cost, as required?
Amortized Costs:

J

Push: 2 What is the total worst-
Pop: 0~ ALO(1). case cost of the sequence?
Multipop: 0

Pays for the push and a future pop.

Splay Trees - 25

Review: Potential method

IDEA: View the bank account as the potential
energy (a la physics) of the dynamic set.
Framework:

e Start with an mitial data structure D).

. Operation [transforms Di—l to Di°

* The cost of operation 7 1s ..

» Define a potential function @ : {D.} — R,
such that ®(D,) = 0 and (D,) = 0 for all 7.

» The amortized cost ¢; with respect to @ is
definedtobe ¢, = ¢, + ©(D;) — D(D,).

Potential method 11

» Like the accounting method, but think of
the credit as potential stored with the entire
data structure.

» Accounting method stores credit with
specific objects while potential method
stores potential 1n the data structure as a
whole.

 Can release potential to pay for future
operations

* Most flexible of the amortized analysis
methods.

Understanding potentials
51- =c;t CD(DZ-) — CD(DZ-_I)
g J

Y

potential difference AD.

o If AD,>0,t
work 1n the d

nen ¢; > ¢,;. Operation 7 stores
ata structure for later use.

«If AD,<0,t

hen él- <c;. The data structure

delivers up stored work to help pay for

operation 1.

Amortized costs bound the true
COStS

The total amortized cost of 7 operations 1s
n
2.6 =

Summing both sides.

Y (¢; + (D)~ D(Dy_,)
=]

l

Amortized costs bound the true costs

The total amortized cost of 7 operations 1s

n
2.6
=]

Z ¢; +D(D;) - D(D,)))

Z +®(D,) - D(Dy)

The series telescopes.

Amortized costs bound the true costs

The total amortized cost of 7 operations 1s

||
T M: T Ms i M::
— e e

C +®(D;) - (D(Dz’—l))

¢; + D(D,) = D(Dy)

AV

C; since ®(D,) > 0 and

Stack Example: Potential

Define: ¢(D;) = #items in stack Thus, ¢(D,)=0.

Plug in for operations:

Push: G ; i.: (I)(jDi)_ ¢(§331) =Thus O(1) amortized
_ time per op.
Pop: ¢ = CW
=1+ (j-1) -
=0
Multi-pop: ¢ = ¢, +4¢(D)) - ¢(D;,)
— K+ (oK) -] K=min(|S|,k)

Ranks

BT is a splay tree with n keys.

B Definition: The size of node v in T, denoted
n(v), 1s the number of nodes in the subtree

rooted at v. (In Sleator & Tarjan Paper, there is a weight w(i) attached to

each node.)

¢ Note: The root 1s of size 2n+1.
B Definition: The rank of v, denoted r(v), is

lg(n(v)).

¢ Note: The root has rank 1g(2n+1).
B Definition: r(T) = 2, _1(v).

Splay Trees - 33

Meaning of Ranks

B The rank of a tree 1s a measure of how well balanced it
1S.

B A well balanced tree has a low rank.

B A badly balanced tree has a high rank.

B The splaying operations tend to make the rank smaller,
which balances the tree and makes other operations
faster.

B Some operations near the root may make the rank
larger and slightly unbalance the tree.

B Amortized analysis 1s used on splay trees, with the rank
of the tree being the potential .(P (T) = r(T))

Splay Trees - 34

Credit Invariant

B We will define amortized costs so that the
following invariant is maintained.

Each node v of T has r(v) credits in 1ts account.

* So, each operation’s amortized cost = its real cost + the
total change 1n r(T) 1t causes (positive or negative).

BLct R =op. 1’s real cost and A. = change 1n r(T) 1t
causes. Total am. cost = (R +A). Imtial
tree has rank 0 & final tree has non-neg. rank. So,
2. A =0, which implies total am. cost > total
real cost.

Splay Trees - 35

What’s Left?

B We want to show that the per-operation amortized
cost 1s logarithmic.

B To do this, we need to look at how BST operations
and splay operations affect r(T).

+ We spend most of our time on splaying, and consider the
specific BST operations later.

B To analyze splaying, we first look at how r(T)
changes as a result of a single substep, 1.¢., z1g, z1g-
Z1g, Or Z1g-zag.

+ Notation: Ranks before and after a substep are denoted
r(v) and r'(v), respectively.

Splay Trees - 36

Proposition 13.6

Proposition 13.6: Let 5 be the change in r(T) caused by a single
substep. Let x be the “x’ 1n our descriptions of these substeps. Then,
* 0 < 3(r'(x) — r(x)) — 2 if the substep 1s a zig-zig or a zig-zag;

* 0 < 3(r'(x) — r(x)) if the substep is a zig.

Proof:

Three cases, one for each kind of substep...

Splay Trees - 37

Case 1: z1g-z1g

Only the ranks of x, y, and
z change. Also, r'(X) =1(2),

r'(y) £r'(x), and r(y) > r(x).
Thus,

0 =r'(x) +r'(y) +1'(z) —1(x) - 1(y) — 1(2)
=1'(y) +1'(z) - 1(x) —1(y)
<1r'(x) +1'(z) - 2r(x). (*)

Also, n(x) + n'(z) <n'(x), which (by property of 1g), implies
r(x) +1'(z) < 2r'(x) — 2, 1.e., Ifa>0.b>0 andc>a+b,
r'(z) <2r'(x) —r(x) — 2. (**) thenlga+lgb<2lgc—2.
By (*) and (*%*), 0 <r'(x) + 2r'(x) — r(x) — 2) — 2r(x)

=3(r'(x) —r(x)) — 2.

Splay Trees - 38

Case 2: zig-zag

Only the ranks of x, y, and A
z change. Also, r'(X) =1(z)
and r(x) < r(y). Thus, T,\ /T,

0 =1'(x) +1'(y) +1'(z) — 1(x) — 1(y) — 1(2)
=1'(y) +1'(2) - 1(x) —1(y)
<1'(y) +1'(z) - 2r(x). (*)

Also, n'(y) + n'(z) < n'(x), which (by property of 1g), implies
r'(y) +1r'(z) £2r'(x) — 2. (*%)

By (*) and (**), 0 < 2r'(x) — 2 — 21(x)
<3(r'(x) —r(x)) — 2.

Splay Trees - 39

Case 3: z1g

W |
A
Only the ranks of x and y change.

Also, r'(y) £ r(y) and r'(x) > r(x). Thus,

6 =1'(x) +1'(y) - 1(x) — 1(y)
<1'(x) —1(x)

< 3(r'(x) — r(x)).

Splay Trees - 40

Proposition 13.7

Proposition 13.7: Let T be a splay tree with root t, and let A be the
total variation of r(T) caused by splaying a node x at depth d. Then,
A <3(r(t) —r(x)) —d + 2.

Proof:

Splay(x) consists of p = [d/2] substeps, each of which 1s a zig-zig or
z1g-zag, except possibly the last one, which 1s a zig 1f d 1s odd.

Let ry(x) = x’s initial rank, r,(x) = x’s rank after the i substep, and
0. = the variation of r(T) caused by the i" substep, where 1 <1 <p.

p p
By Proposition 13.6, A=Y5, <> (3(t;(x)—1_(x))—2)+2

=1 Sk

=3(1,(x) —1,(x)) —2p+2
<3(r(t) - 1(x)) —d + 2

Splay Trees - 41

Meaning of Proposition

B If dis small (Iess than 3(x(t) — r(x)) + 2) then the
splay operation can increase r(t) and thus make
the tree less balanced.

B If d 1s larger than this, then the splay operation
decreases r(t) and thus makes the tree better
balanced.

B Note that r(t) <lg(2n + 1)

Splay Trees - 42

Amortized Costs

B As stated before, each operation’s amortized
cost = 1ts real cost + the total change 1n r(T) 1t
causes, 1.e., A.

¢ This ensures the Credit Invariant 1sn’t violated.
B Real cost 1s d, so amortized cost 1s d + A.

B The real cost of d even includes the cost of
binary tree operations such as searching.

B Note: A can be positive or negative (or zero).

¢ [f1t’s positive, we’re overcharging.
¢ [f 1t’s negative, we’re undercharging.

Splay Trees - 43

Another Look at A

A = the total change in r(T). 1(T) = Z r(v) = Z lg(n(v))

veT veT

= lg(H n(v)j

veT

Consider this example:
splay(b)
n(a\ —aA > > b
! a @4 A <0 4

b\% ad] cQ2
c®?2 splay(a) do 1
Ry 'A>O

r(T)=1g4-3-2-1) r(T)=1g4-2-1-1)
=1g(24) = 1g(8)

Splay Trees - 44

Unbalancing the Tree

B In fact, a sequence of zig operations can result
in a completely unbalanced linear tree. Then a
search operation can take O(n) time, but this 1s
OK because at least n operations have been
performed up to this point.

Splay Trees - 45

A Bound on Amortized Cost

We have:

Amortized Cost of Splaying
=d+A
<d+ (@Gt)—-r(x))—d+2) {Prop. 13.7}
=3(r(t) —r(x)) + 2
<3r(t) +2
=3lg2n+1)+2 {Recall t 1s the root}
= O(Ig n)

Splay Trees - 46

Finishing Up

B Until now, we’ve just focused on splaying costs.

B We also need to ensure that BST operations can be
charged in a way that maintains the Credit Invariant.

B Three Cases:
¢ Search: Not a problem — doesn’t change the tree.

¢ Delete: Not a problem — removing a node can only
decrease ranks, so existing credits are still fine.

¢ Insert: As shown next, an Insert can cause r(T) to
increase by up to 1g(2n+3) + 1g 3. Thus, the Credit
Invariant can be maintained 1f Insert 1s assessed an O(lg
n) charge.

Splay Trees - 47

k

Splay Trees - 48

Ins ert Lots of typos in book!

Fori1=1, ...,d, let n(v,) and n'(v,) be sizes before and after insertion,
and r(v;) and r'(v,) be ranks before and after insertion.

;| Leaf gets replaced by “real”
We have: n'(v))=n(v,)+2. |node and two leaves.

Subtree at v,
[/ , .
Fori=1,...,d-1, n(v,) +2 < n(vy,), and doesn’t include

r'(v) = lgn'(vy) = lg(n(v;) + 2) < lg(n(vy,)) = 1(vy,). | Vi 20d 16
“other” child.

Thus, Zi=1..d (r'(v;) —1r(v;)) < 1'(vg) —1(vy) + Zi=1..d-1(T(Vi+1) —1(vy))

Note: v, is excluded = 1'(Vg) —1(Vg) T 1(Vg) — 1(v))
here — it doesn’t have an <l1g(2n + 3).
old rank! It’s new rank is 1g 3.

Thus, the Credit Invariant can be maintained 1f Insert 1s assessed
a charge of at most 1g(2n + 3) + Ig 3.

Splay Trees - 49

For the insert operation, we perform a normal BST insert followed by a splay operation on the node
inserted. Assume node z is inserted at depth k. Denote the parent of x as y,. y,’s parent as y-, and
so on (the root of the tree is y;.). Then the change in potential due to the insertion of = is (r is rank
before the insertion and 7' is rank after the insertion, s is weight sum before the insertion):

Ag

k
> (r'(y;) = r(y;)

k
> (log(s(y;) +1) —log(s(y;))
j=1
k
oo (5 + 1)
; Dg(s(y;)
[s(y;) +1
log \\j,l:[l (Sy"ET (note that s(y;) +1 < s(yj+1))
log (s(y2) s(ys) s(ye) sy) + 1)
\s(1) s(y2) s(ye—1) s(u)
log ([s(ys) +)
\ s(Uk)

logn

2012.12.21 not The End.

	Splay Trees
	BST: Search
	BST: Insert
	BST: Delete
	BST: Delete
	BST: Delete
	BST: Delete
	Splaying
	Zig-Zig
	Zig-Zag
	Zig
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Result of splaying	
	When to Splay
	Amortized Analysis Review
	Review: Accounting Method
	Accounting Method (Continued)
	Accounting Method (Continued)
	Review: Potential method
	Potential method II
	Understanding potentials
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Stack Example: Potential
	Ranks
	Meaning of Ranks
	Credit Invariant
	What’s Left?
	Proposition 13.6
	Case 1: zig-zig
	Case 2: zig-zag
	Case 3: zig
	Proposition 13.7
	Meaning of Proposition
	Amortized Costs
	Another Look at 
	Unbalancing the Tree
	A Bound on Amortized Cost
	Finishing Up
	Insert
	Insert
	幻灯片编号 50
	2012.12.21 not The End.

