
Splay Trees -

1

Splay Trees

In balanced tree schemes, explicit rules are
followed to ensure balance.
In splay trees, there are no such rules.
Search, insert, and delete operations are like in

binary search trees, except at the end of each
operation a special step called splaying is done.
Splaying ensures that all operations take O(lg

n)

amortized

time.
First, a quick review of BST operations…

Splay Trees -

2

BST: Search
44

8817

65 9732

28 54 82

7629

80
Note:
Sentinel leaf nodes are
assumed.
 tree with n keys
has 2n+1 nodes.

Search(25) Search(76)

Splay Trees -

3

BST: Insert
44

8817

65 9732

28 54 82

7629

80

Insert(78)

78

Splay Trees -

4

BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(32)

Has only one
child: just splice
out 32.

Splay Trees -

5

BST: Delete
44

8817

65 9728

54 82

76

29

80

78

Delete(32)

Splay Trees -

6

BST: Delete
44

8817

65 9732

28 54 82

7629

80

78

Delete(65)

Has two children:
Replace 65 by successor,
76, and splice out
successor.

Note: Successor can have
at most one child. (Why?)

Splay Trees -

7

BST: Delete
44

8817

76 9732

28 54 82

29 80

78

Delete(65)

Splay Trees -

8

Splaying

In splay trees, after performing an ordinary BST
Search, Insert, or Delete, a splay operation is
performed on some node x (as described later).
The splay operation moves x to the root of the

tree.
The splay operation consists of sub-operations

called zig-zig, zig-zag, and zig.

Splay Trees -

9

Zig-Zig

10

20

30

T3 T4

T2

T1

z

y

x

30

20

10

T1 T2

T3

T4

x

y

z

(Symmetric case too)

Note: x’s

depth decreases by two.

x has a grandparent

Splay Trees -

10

Zig-Zag

10

30

20

T3

T4

T2

T1

z

y

x

20

10

T1 T2 T3 T4

x

z

(Symmetric case too)

Note: x’s

depth decreases by two.

30
y

x has a grandparent

Splay Trees -

11

Zig

20

10

T1 T2 T3 T4

x

y

(Symmetric case too)

Note: x’s

depth decreases by one.

30
w

10

20

30

T3 T4

T2

T1

y

x

w

x has no

grandparent (so, y is the root)
Note: w could be NIL

Splay Trees -

12

Complete Example
44

8817

65 9732

28 54 82

7629

80

78

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

13

Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

zig-zag

x

yz

Splay Trees -

14

Complete Example
44

8817

65 9732

28 54 82

7829

8076

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

15

Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

zig-zag
z y

x

Splay Trees -

16

Complete Example
44

8817

65

9732

28

54

82

78

29 8076

Splay(78) 50

x

y

z

zig-zag

Splay Trees -

17

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

zig-zag

z y

x

Splay Trees -

18

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78

y
x

w

zig

Splay Trees -

19

Complete Example
44

8817

65
9732

28
54

82

29

80
76

Splay(78)

50

78 x
y

w

zig

Result of splaying

The result is a binary tree, with the left subtree
 having all keys less than the root, and the right

subtree

having keys greater than the root.
Also, the final tree is “more balanced”

than the

original.
However, if an operation near the root is done,

the tree can become less balanced.

Splay Trees -

20

Splay Trees -

21

When to Splay
Search:

Successful:

Splay node where key was found.

Unsuccessful:

Splay last-visited internal node (i.e.,
last node with a key).

Insert:

Splay newly added node.

Delete:

Splay parent of removed node (which is either the
node with the deleted key or its successor).

Note: All operations run in O(h) time, for a tree
of height h.

Splay Trees -

22

Amortized Analysis Review

Accounting Method

Idea: When an operation’s amortized cost exceeds it
actual cost, the difference is assigned to certain tree
nodes as credit.

Credit is used to pay for subsequent operations
whose amortized cost is less than their actual cost.

Most of our analysis will focus on splaying.

The BST operations will be easily dealt with at the
end.

Splay Trees -

23

Review: Accounting Method

Stack Example:

Operations:
•

Push(S, x).

•

Pop(S).
•

Multipop(S, k): if stack has s items, pop off min(s, k)
items.

s ≥ k
items

s

k
items

Multipop(S, k)

Multipop(S, k)

s –

k
items

0 items

Can implement in O(1) time.

Splay Trees -

24

Accounting Method (Continued)

We charge

each operation an amortized cost.
Charge may be more

or less

than actual cost.

If more, then we have credit.
This credit can be used to pay for future

operations whose amortized cost is less than
their actual cost.
Require: For any sequence of operations,

amortized cost upper bounds worst-case cost.

That is, we always have nonnegative credit.

Splay Trees -

25

Accounting Method (Continued)

Stack Example:

Actual Costs:
Push:

1

Pop:

1
Multipop:

min(s, k)

Amortized Costs:
Push:

2

Pop:

0
Multipop:

0

Pays for the push and a future pop.

All O(1).

For a sequence of n
operations, does total
amortized cost upper
bound total worst-case
cost, as required?

What is the total worst-
case cost of the sequence?

Review: Potential method
IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.
Framework:
•

Start with an initial data structure D0.

•

Operation i

transforms Di–1

to Di.
•

The cost of operation i

is ci.

•

Define a potential function

: {Di} R,
such that (D0) = 0

and (Di

)

0

for all i.

•

The amortized cost ĉi

with respect to

is
defined to be ĉi

= ci

+ (Di) –

(Di–1).

Potential method II
•

Like the accounting method, but think of
the credit as potential stored with the entire
data structure.

•

Accounting method stores credit with
specific objects while potential method
stores potential in the data structure as a
whole.

•

Can release potential to pay for future
operations

•

Most flexible of the amortized analysis
methods.

Understanding potentials
ĉi

= ci

+ (Di) –

(Di–1)

potential difference i

•

If i

> 0, then ĉi

> ci. Operation i

stores
work in the data structure for later use.

•

If i

< 0, then ĉi

< ci. The data structure
delivers up stored work to help pay for
operation i.

Amortized costs bound the true
costs

The total amortized cost of n

operations is

n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.

The total amortized cost of n

operations is

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

The series telescopes.

Amortized costs bound the true costs

The total amortized cost of n

operations is

n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since (Dn)
0

and

(D0) = 0.

Amortized costs bound the true costs

Stack Example: Potential
Define: (Di) = #items in stack Thus, (D0)=0.

Plug in for operations:
Push: ĉi = ci + (Di) - (Di-1)

= 1 + j - (j-1)
= 2

Pop: ĉi = ci + (Di) - (Di-1)
= 1 + (j-1) - j
= 0

Multi-pop: ĉi = ci + (Di) - (Di-1)
= k’ + (j-k’) - j k’=min(|S|,k)
= 0

Thus O(1) amortized
time per op.

Splay Trees -

33

Ranks

T is a splay tree with n keys.
Definition: The size of node v in T, denoted

n(v), is the number of nodes in the subtree
 rooted at v. (In Sleator

& Tarjan

Paper, there is a weight w(i) attached to

each node

.)

Note: The root is of size 2n+1.

Definition: The rank of v, denoted r(v), is
lg(n(v)).

Note: The root has rank lg(2n+1).

Definition: r(T)

= vT

r(v).

Meaning of Ranks
 The rank of a tree is a measure of how well balanced it

is.
 A well balanced tree has a low rank.
 A badly balanced tree has a high rank.
 The splaying operations tend to make the rank smaller,

which balances the tree and makes other operations
faster.

 Some operations near the root may make the rank
larger and slightly unbalance the tree.

 Amortized analysis is used on splay trees, with the rank
of the tree

being the potential .(Φ(T) = r(T))

Splay Trees -

34

Splay Trees -

35

Credit Invariant
We will define amortized costs so that the

following invariant is maintained.

So, each operation’s amortized cost = its real cost + the
total change in r(T) it causes (positive or negative).

Let Ri

= op. i’s

real cost and i

= change in r(T) it
causes. Total am. cost = i=1,…,n

(Ri

+ i

). Initial
tree has rank 0 & final tree has non-neg. rank. So,
i=1,…n

i

0, which implies total am. cost

total
real cost.

Each node v of T has r(v) credits in its account.Each node v of T has r(v) credits in its account.

Splay Trees -

36

What’s Left?
We want to show that the per-operation amortized

cost is logarithmic.
To do this, we need to look at how BST operations

and splay operations affect r(T).

We spend most of our time on splaying, and consider the
specific BST operations later.

To analyze splaying, we first look at how r(T)
changes as a result of a single substep, i.e., zig, zig-

 zig, or zig-zag.

Notation: Ranks before and after a substep

are denoted

r(v)

and r(v), respectively.

Splay Trees -

37

Proposition 13.6

Proposition 13.6: Let

be the change in r(T) caused by a single
substep. Let x be the “x”

in our descriptions of these substeps. Then,

•

 3(r(x)

r(x))

2 if the substep

is a zig-zig

or a zig-zag;
•

 3(r(x)

r(x)) if the substep

is a zig.

Proposition 13.6: Let

be the change in r(T) caused by a single
substep. Let x be the “x”

in our descriptions of these substeps. Then,

• 3(r(x)

r(x))

2 if the substep

is a zig-zig

or a zig-zag;
• 3(r(x)

r(x)) if the substep

is a zig.

Proof:

Three cases, one for each kind of substep…

Splay Trees -

38

Case 1: zig-zig
10

20

30

T3 T4

T2

T1

z
y

x

30

20

10

T1 T2

T3

T4

x

y

z
Only the ranks of x, y, and
z change. Also, r(x) = r(z),
r(y)

r(x), and r(y)

r(x).

Thus,

= r(x) + r(y) + r(z) –

r(x) –

r(y) –

r(z)
= r(y) + r(z) –

r(x) –

r(y)

r(x) + r(z) –

2r(x). (*)

Also, n(x) + n(z)

n(x), which (by property of lg), implies
r(x) + r(z)

2r(x) –

2, i.e.,

r(z)

2r(x) –

r(x) –

2. (**)

By (*) and (**), r(x) + (2r(x) –

r(x) –

2) –

2r(x)
= 3(r(x) –

r(x)) –

2.

If a > 0, b > 0, and c

a + b,
then lg

a + lg

b

2 lg

c –

2.

Splay Trees -

39

Case 2: zig-zag

Only the ranks of x, y, and
z change. Also, r(x) = r(z)
and r(x)

r(y). Thus,

= r(x) + r(y) + r(z) –

r(x) –

r(y) –

r(z)
= r(y) + r(z) –

r(x) –

r(y)

r(y) + r(z) –

2r(x). (*)

Also, n(y) + n(z)

n(x), which (by property of lg), implies

r(y) + r(z)

2r(x) –

2. (**)

By (*) and (**), 2r(x) –

2 –

2r(x)

3(r(x) –

r(x)) –

2.

10

30

20

T3

T4

T2

T1

z
y

x

20

10

T1 T2 T3 T4

x

z 30y

Splay Trees -

40

Case 3: zig

Only the ranks of x and y change.
Also, r(y)

r(y) and r(x)

r(x). Thus,

= r(x) + r(y) –

r(x) –

r(y)

r(x) –

r(x)

3(r(x) –

r(x)).

20

10

T1 T2 T3 T4

x

y 30w

10

20

30

T3 T4

T2

T1

y
x

w

Splay Trees -

41

Proposition 13.7
Proposition 13.7: Let T be a splay tree with root t, and let

be the

total variation of r(T) caused by splaying a node x at depth d. Then,
 3(r(t)

r(x))

d + 2.

Proposition 13.7: Let T be a splay tree with root t, and let

be the
total variation of r(T) caused by splaying a node x at depth d. Then,

 3(r(t)

r(x))

d + 2.

Proof:

Splay(x)

consists of p

= d/2

substeps, each of which is a zig-zig

or
zig-zag, except possibly the last one, which is a zig

if d is odd.

Let r0

(x)

= x’s

initial rank, ri

(x)

= x’s

rank after the ith

substep, and

i

= the variation of r(T) caused by the ith

substep, where 1

i

p.

By Proposition 13.6,

2dr(x))3(r(t)

22p(x))r(x)3(r

22(x))r(x)3(rδΔ

0p

p

1i
1ii

p

1i
i

Meaning of Proposition

If d is small (less than 3(r(t)

r(x)) + 2) then the
splay operation can increase r(t) and thus make
the tree less balanced.
If d is larger than this, then the splay operation

decreases r(t) and thus makes the tree better
balanced.
Note that r(t)

lg(2n + 1)

Splay Trees -

42

Splay Trees -

43

Amortized Costs
As stated before, each operation’s amortized

cost = its real cost + the total change in r(T) it
causes, i.e., .

This ensures the Credit Invariant

isn’t violated.

Real cost is d, so amortized cost is d + .
The real cost of d even includes the cost of

binary tree operations such as searching.
Note:

can be positive or negative (or zero).

If it’s positive, we’re overcharging.

If it’s negative, we’re undercharging.

Splay Trees -

44

Another Look at

= the total change in r(T).

Consider this example:

Tv

TvTv

n(v)lg

lg(n(v))r(v)r(T)

a
b

c
d

4

3
2

1

n(a)

r(T) = lg(4

3

2

1)
= lg(24)

b

c
d

4

2
1

a 1

r(T) = lg(4

2

1

1)
= lg(8)

splay(b)

splay(a)

< 0

> 0

Unbalancing the Tree

In fact, a sequence of zig

operations can result
in a completely unbalanced linear tree. Then a
search operation can take O(n) time, but this is
OK because at least n operations have been
performed up to this point.

Splay Trees -

45

Splay Trees -

46

A Bound on Amortized Cost

We have:

Amortized Cost of Splaying
= d +

d + (3(r(t) –

r(x)) –

d + 2) {Prop. 13.7}

= 3(r(t) –

r(x)) + 2
< 3r(t) + 2
= 3lg(2n + 1) + 2 {Recall t is the root}
= O(lg

n)

Splay Trees -

47

Finishing Up
Until now, we’ve just focused on splaying costs.
We also need to ensure that BST operations

can be

charged in a way that maintains the Credit Invariant.
Three Cases:

Search: Not a problem —

doesn’t change the tree.

Delete: Not a problem —

removing a node can only
decrease ranks, so existing credits are still fine.

Insert: As shown next, an Insert can cause r(T) to
increase by up to lg(2n+3) + lg

3. Thus, the Credit

Invariant can be maintained if Insert is assessed an O(lg
 n) charge.

Splay Trees -

48

Insert
44

88

65

82

76

80

Insert(78)

78

44

88

65

82

76

80

Insert(k)

k

v = v0

v1

v2

vd

Splay Trees -

49

Insert
For i = 1, …, d, let n(vi

)

and n'(vi

)

be sizes

before and after insertion,
and r(vi

)

and r'(vi

)

be ranks

before and after insertion.

We have: n'(vi

)

= n(vi

)

+ 2.

For i = 1, …, d –

1, n(vi

) + 2

n(vi+1

), and
r'(vi

) = lg(n'(vi

)) = lg(n(vi

) + 2)

lg(n(vi+1

)) = r(vi+1

).

Thus, i=1..d

(r'(vi

) –

r(vi

))

r'(vd

) –

r(vd

) + i=1..d-1

(r(vi+1

) –

r(vi

))
= r'(vd

) –

r(vd

)

+ r(vd

)

–

r(v1

)

lg(2n + 3).

Thus, the Credit Invariant can be maintained if Insert is assessed
a charge of at most lg(2n + 3) + lg

3.

Lots of typos in book!

Note: v0

is excluded
here –

it doesn’t have an

old rank! It’s new rank is lg

3.

Leaf gets replaced by “real”
node and two leaves.

Subtree

at vi
doesn’t include
vi+1

and its
“other”

child.

2012.12.21 not The End.

	Splay Trees
	BST: Search
	BST: Insert
	BST: Delete
	BST: Delete
	BST: Delete
	BST: Delete
	Splaying
	Zig-Zig
	Zig-Zag
	Zig
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Complete Example
	Result of splaying	
	When to Splay
	Amortized Analysis Review
	Review: Accounting Method
	Accounting Method (Continued)
	Accounting Method (Continued)
	Review: Potential method
	Potential method II
	Understanding potentials
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Amortized costs bound the true costs
	Stack Example: Potential
	Ranks
	Meaning of Ranks
	Credit Invariant
	What’s Left?
	Proposition 13.6
	Case 1: zig-zig
	Case 2: zig-zag
	Case 3: zig
	Proposition 13.7
	Meaning of Proposition
	Amortized Costs
	Another Look at
	Unbalancing the Tree
	A Bound on Amortized Cost
	Finishing Up
	Insert
	Insert
	幻灯片编号 50
	2012.12.21 not The End.

